Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Magnesium (Mg) and its alloys provide a desirable mixture of characteristics, including minimal density and an excellent strength/weight ratio. Nevertheless, these materials have limitations in relation to their thermal conductivity, wear and corrosion resistance, among various other attributes. The limits described above place restrictions on the use of these alloys in various applications. Currently, various methods are being employed to efficiently address and alleviate those limitations through the utilization of composite materials. The incorporation of micro/nanosized elements has been utilized to elevate the properties of Mg. Various methods are utilized to provide a homogeneous dispersal of reinforcement throughout the matrix, resulting in the production of magnesium metal matrix composites (MgMMCs). The use of MgMMCs has experienced a notable rise across many sectors such as aerospace, defense, automotive, and biomedical. This may be attributed to their exceptional attributes, which consist of enhanced specific strength, reduced weight, and congruence with biological systems. The current study objective is to perform an exhaustive examination of the different reinforcements employed in the fabrication of MgMMCs and their impact on mechanical and tribological characteristics. Furthermore, the study presented in this paper showcases the development of prediction models for the wear properties of MgMMCs through the utilization of diverse machine learning approaches.

References

1.
Gupta
,
M.
, and
Sharon
,
N. M. L.
,
2011
,
Magnesium, Magnesium Alloys, and Magnesium Composites
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
2.
Li
,
S.
,
Yang
,
X.
,
Hou
,
J.
, and
Du
,
W.
,
2020
, “
A Review on Thermal Conductivity of Magnesium and Its Alloys
,”
J. Magnesium Alloys
,
8
(
1
), pp.
78
90
.
3.
Gray
,
J. E.
, and
Luan
,
B.
,
2002
, “
Protective Coatings on Magnesium and Its Alloys—A Critical Review
,”
J. Alloys Compd.
,
336
(
1–2
), pp.
88
113
.
4.
Kumar
,
D. S.
,
Sasanka
,
C. T.
,
Ravindra
,
K.
, and
Suman
,
K. N. S.
,
2015
, “
Magnesium and Its Alloys in Automotive Applications—A Review
,”
Am. J. Mater. Sci. Technol.
,
4
(
1
), pp.
12
30
.
5.
Blawert
,
C.
,
Hort
,
N.
, and
Kainer
,
K. U.
,
2004
, “
Automotive Applications of Magnesium and Its Alloys
,”
Trans. Indian Inst. Met.
,
57
(
4
), pp.
397
408
.
6.
Tan
,
J.
, and
Ramakrishna
,
S.
,
2021
, “
Applications of Magnesium and Its Alloys: A Review
,”
Appl. Sci.
,
11
(
15
), p.
6861
.
7.
Kulekci
,
M. K.
,
2008
, “
Magnesium and Its Alloys Applications in Automotive Industry
,”
Int. J. Adv. Manuf. Technol.
,
39
(
9–10
), pp.
851
865
.
8.
Staiger
,
M. P.
,
Pietak
,
A. M.
,
Huadmai
,
J.
, and
Dias
,
G.
,
2006
, “
Magnesium and Its Alloys as Orthopedic Biomaterials: A Review
,”
Biomaterials
,
27
(
9
), pp.
1728
1734
.
9.
Srinivasan
,
A.
,
Pillai
,
U. T. S.
, and
Pai
,
B. C.
,
2007
, “
Microstructure and Mechanical Properties of Low Pressure Cast AZ91 Magnesium Alloy
,”
Int. J. Microstruct. Mater. Prop.
,
2
(
3–4
), pp.
429
439
.
10.
Mondet
,
M.
,
Barraud
,
E.
,
Lemonnier
,
S.
,
Guyon
,
J.
,
Allain
,
N.
, and
Grosdidier
,
T.
,
2016
, “
Microstructure and Mechanical Properties of AZ91 Magnesium Alloy Developed by Spark Plasma Sintering
,”
Acta Mater.
,
119
(
1
), pp.
55
67
.
11.
Li
,
Y.
,
Chen
,
Y.
,
Cui
,
H.
,
Xiong
,
B.
, and
Zhang
,
J.
,
2009
, “
Microstructure and Mechanical Properties of Spray-Formed AZ91 Magnesium Alloy
,”
Mater. Charact.
,
60
(
3
), pp.
240
245
.
12.
Ding
,
H.
,
Liu
,
L.
,
Kamado
,
S.
,
Ding
,
W.
, and
Kojima
,
Y.
,
2008
, “
Study of the Microstructure, Texture and Tensile Properties of As-Extruded AZ91 Magnesium Alloy
,”
J. Alloys Compd.
,
456
(
1–2
), pp.
400
406
.
13.
Mu
,
S.
,
Du
,
J.
,
Jiang
,
H.
, and
Li
,
W.
,
2014
, “
Composition Analysis and Corrosion Performance of a Mo-Ce Conversion Coating on AZ91 Magnesium Alloy
,”
Surf. Coat. Int.
,
254
(
1
), pp.
364
370
.
14.
,
Y. Z.
,
Wang
,
Q. D.
,
Ding
,
W. J.
,
Zeng
,
X. Q.
, and
Zhu
,
Y. P.
,
2000
, “
Fracture Behavior of AZ91 Magnesium Alloy
,”
Mater. Lett.
,
44
(
5
), pp.
265
268
.
15.
Stachowiak
,
G. W.
,
2017
, “
How Tribology Has Been Helping Us to Advance and to Survive
,”
Friction
,
5
(
3
), pp.
233
247
.
16.
Park
,
S. H. C.
,
Sato
,
Y. S.
, and
Kokawa
,
H.
,
2003
, “
Effect of Micro-texture on Fracture Location in Friction Stir Weld of Mg Alloy AZ61 During Tensile Test
,”
Scr. Mater.
,
49
(
2
), pp.
161
166
.
17.
Holmberg
,
K.
, and
Erdemir
,
A.
,
2017
, “
Influence of Tribology on Global Energy Consumption, Costs and Emissions
,”
Friction
,
5
(
3
), pp.
263
284
.
18.
Pramod Kumar
,
G.
,
Balasubramanian
,
K. R.
,
Phani Prabhakar
,
K. V.
, and
Cheepu
,
M.
,
2023
, “
Investigation of Microstructure, Mechanical, and Corrosion Properties of Inconel 617 Joints Welded by Laser–MIG Hybrid Welding
,”
Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl.
,
237
(
9
) pp.
1921
1934
.
19.
Ahuja
,
N.
,
Batra
,
U.
, and
Kumar
,
K.
,
2020
, “
Experimental Investigation and Optimization of Wire Electrical Discharge Machining for Surface Characteristics and Corrosion Rate of Biodegradable Mg Alloy
,”
J. Mater. Eng. Perform.
,
29
(
6
), pp.
4117
4129
.
20.
Kavimani
,
V.
,
Prakash
,
K. S.
,
Gunashri
,
R.
, and
Sathish
,
P.
,
2018
, “
Corrosion Protection Behaviour of R-GO/TiO2 Hybrid Composite Coating on Magnesium Substrate in 3.5 wt% NaCl
,”
Prog. Org. Coat.
,
125
(
Sept.
), pp.
358
364
.
21.
Lim
,
C. Y. H.
,
Lim
,
S. C.
, and
Gupta
,
M.
,
2003
, “
Wear Behaviour of SiCp-Reinforced Magnesium Matrix Composites
,”
Wear
,
255
(
1–6
), pp.
629
637
.
22.
Kavimani
,
V.
,
Prakash
,
K. S.
,
Starvin
,
M. S.
,
Kalidas
,
B.
,
Viswamithran
,
V.
, and
Arun
,
S. R.
,
2020
, “
Tribo-surface Characteristics and Wear Behaviour of SiC@r-GO/Mg Composite Worn Under Varying Control Factor
,”
Silicon
,
12
(
1
), pp.
29
39
.
23.
Zhu
,
J.
,
Qi
,
J.
,
Guan
,
D.
,
Ma
,
L.
, and
Dwyer-Joyce
,
R.
,
2020
, “
Tribological Behaviour of Self-lubricating Mg Matrix Composites Reinforced With Silicon Carbide and Tungsten Disulfide
,”
Tribol. Int.
,
146
(
1
), p.
106253
.
24.
Seshan
,
S.
,
Jayamathy
,
M.
,
Kailas
,
S. V.
, and
Srivatsan
,
T. S.
,
2003
, “
The Tensile Behavior of Two Magnesium Alloys Reinforced With Silicon Carbide Particulates
,”
Mater. Sci. Eng. A
,
363
(
1–2
), pp.
345
351
.
25.
Thirugnanasambandham
,
T.
,
Chandradass
,
J.
,
Baskara Sethupathi
,
P.
, and
Leenus Jesu Martin
,
M.
,
2019
, “
Experimental Study of Wear Characteristics of Al2O3 Reinforced Magnesium Based Metal Matrix Composites
,”
Mater. Today: Proc.
,
14
(
1
), pp.
211
218
.
26.
Shin
,
D.
,
2012
, “
Microstructual Characteristics of Magnesium Metal Matrix Composites
,” University of Central Florida, Orlando, FL, pp.
1
49
.
27.
Kevorkijan
,
V.
, and
Davor Škapin
,
S.
,
2009
, “
Mg/B4C Composites With a High Volume Fraction of Fine Ceramic Reinforcement
,”
Mater. Manuf. Process.
,
24
(
12
), pp.
1337
1340
.
28.
Dinesh Kumar
,
S.
,
Ravichandran
,
M.
,
Sakthivelu
,
S.
,
Meignanamoorthy
,
M.
,
Chanakyan
,
C.
, and
Alagarsamy
,
S. V.
,
2020
, “
Mechanical Properties of Magnesium-Silicon Carbide Composite Fabricated Through Powder Metallurgy Route
,”
Mater. Today: Proc.
,
27
(
1
), pp.
1137
1141
.
29.
Kim
,
W. J.
,
An
,
C. W.
,
Kim
,
Y. S.
, and
Hong
,
S. I.
,
2002
, “
Mechanical Properties and Microstructures of an AZ61 Mg Alloy Produced by Equal Channel Angular Pressing
,”
Scr. Mater.
,
47
(
1
), pp.
39
44
.
30.
Huang
,
S. J.
,
Lin
,
P. C.
, and
Aoh
,
J. N.
,
2015
, “
Mechanical Behavior Enhancement of AM60/Al2O3p Magnesium Metal-Matrix Nanocomposites by ECAE
,”
Mater. Manuf. Process.
,
30
(
10
), pp.
1272
1277
.
31.
Huang
,
S. J.
, and
Ali
,
A. N.
,
2018
, “
Effects of Heat Treatment on the Microstructure and Microplastic Deformation Behavior of SiC Particles Reinforced AZ61 Magnesium Metal Matrix Composite
,”
Mater. Sci. Eng. A
,
711
(
Nov.
), pp.
670
682
.
32.
Kevorkijan
,
V.
, and
Škapin
,
S. D.
,
2009
, “
Fabrication and Characterisation of Mg-B4C Composites
,”
Assoc. Metall. Eng. Serbia
,
15
(
1
), pp.
3
18
. https://api.semanticscholar.org/CorpusID:138947529
33.
Vinayagam
,
M.
,
2022
, “
Synthesis and Evaluation on Mechanical Properties of LM4/AlN Alloy Based Composites
,”
Energy Sources Part A
,
44
(
1
), pp.
1888
1897
.
34.
Lelito
,
J.
,
Zak
,
P. L.
,
Shirzadi
,
A. A.
,
Greer
,
A. L.
,
Krajewski
,
W. K.
,
Suchy
,
J. S.
,
Haberl
,
K.
, and
Schumacher
,
P.
,
2012
, “
Effect of SiC Reinforcement Particles on the Grain Density in a Magnesium-Based Metal-Matrix Composite: Modelling and Experiment
,”
Acta Mater.
,
60
(
6–7
), pp.
2950
2958
.
35.
Shen
,
J.
,
Yin
,
W.
,
Wei
,
Q.
,
Li
,
Y.
,
Liu
,
J.
, and
An
,
L.
,
2013
, “
Effect of Ceramic Nanoparticle Reinforcements on the Quasistatic and Dynamic Mechanical Properties of Magnesium-Based Metal Matrix Composites
,”
J. Mater. Res.
,
28
(
13
), pp.
1835
1852
.
36.
Tajdeen
,
A.
,
Megalingam
,
A.
,
Sivanesh Prabhu
,
M.
, and
Wasim Khan
,
M.
,
2023
, “
Role of Tungsten Disulfide Particles on the Microstructure, Mechanical, and Tribological Behaviors of Friction Stir-Processed Magnesium-Based Composite
,”
ASME J. Tribol.
,
145
(
1
), p.
014501
.
37.
Hassan
,
S. F.
,
Al-Qutub
,
A. M.
,
Tun
,
K. S.
, and
Gupta
,
M.
,
2015
, “
Study of Wear Mechanisms of a Novel Magnesium Based Hybrid Nanocomposite
,”
ASME J. Tribol.
,
137
(
1
), p.
011601
.
38.
Narayanasamy
,
P.
, and
Selvakumar
,
N.
,
2017
, “
Effect of Hybridizing and Optimization of TiC on the Tribological Behavior of Mg–MoS2 Composites
,”
ASME J. Tribol.
,
139
(
5
), p.
051301
.
39.
Vedabouriswaran
,
G.
, and
Aravindan
,
S.
,
2019
, “
Wear Characteristics of Friction Stir Processed Magnesium RZ 5 Composites
,”
ASME J. Tribol.
,
141
(
4
), p.
041601
.
40.
Aydin
,
F.
,
Durgut
,
R.
,
Mustu
,
M.
, and
Demir
,
B.
,
2023
, “
Prediction of Wear Performance of ZK60/CeO2 Composites Using Machine Learning Models
,”
Tribol. Int.
,
177
(
July
), p.
107945
.
41.
Reena Roy
,
R.
,
Shanmugam
,
L.
,
Vinothini
,
A.
,
Venkatachalam
,
N.
,
Sumathy
,
G.
,
Murugeshan
,
B.
,
Mercy Rajaselvi Beaulah
,
P.
, and
Kerga
,
G. A.
,
2023
, “
Investigation of the Wear Behavior of AA6063/Zirconium Oxide Nanocomposites Using Hybrid Machine Learning Algorithms
,”
J. Chem.
,
2023
(
1
), pp.
1
16
.
42.
Hasan
,
M. S.
,
Kordijazi
,
A.
,
Rohatgi
,
P. K.
, and
Nosonovsky
,
M.
,
2022
, “
Triboinformatics Approach for Friction and Wear Prediction of Al-Graphite Composites Using Machine Learning Methods
,”
ASME J. Tribol.
,
144
(
1
), p.
011701
.
43.
Ammisetti
,
D. K.
, and
Harish Kruthiventi
,
S. S. H.
,
2024
, “
Experimental Investigation of the Influence of Various Wear Parameters on the Tribological Characteristics of AZ91 Hybrid Composites and Their Machine Learning Modeling
,”
ASME J. Tribol.
,
146
(
5
), p.
051704
.
44.
Deng
,
K. K.
,
Wu
,
K.
,
Wu
,
Y. W.
,
Nie
,
K. B.
, and
Zheng
,
M. Y.
,
2010
, “
Effect of Submicron Size SiC Particulates on Microstructure and Mechanical Properties of AZ91 Magnesium Matrix Composites
,”
J. Alloys Compd.
,
504
(
2
), pp.
542
547
.
45.
Nie
,
K. B.
,
Wang
,
X. J.
,
Xu
,
L.
,
Wu
,
K.
,
Hu
,
X. S.
, and
Zheng
,
M. Y.
,
2012
, “
Effect of Hot Extrusion on Microstructures and Mechanical Properties of SiC Nanoparticles Reinforced Magnesium Matrix Composite
,”
J. Alloys Compd.
,
512
(
1
), pp.
355
360
.
46.
Jayasathyakawin
,
S.
, and
Ravichandran
,
M.
,
2022
, “
Experimental Investigations on Effect of Silicon Carbide on Microstructure and Mechanical Properties in Mg-3 Wt% Al Alloy Matrix Using Powder Metallurgy
,”
Silicon
,
14
(
14
), pp.
9163
9173
.
47.
Zhu
,
Z. H.
,
Nie
,
K. B.
,
Munroe
,
P.
,
Deng
,
K. K.
,
Guo
,
Y. C.
, and
Han
,
J. G.
,
2021
, “
Synergistic Effects of Hybrid (SiC+TiC) Nanoparticles and Dynamic Precipitates in the Design of a High-Strength Magnesium Matrix Nanocomposite
,”
Mater. Chem. Phys.
,
259
(
Nov.
), p.
124048
.
48.
Kumar
,
A.
,
Kumar
,
S.
,
Mukhopadhyay
,
N. K.
,
Yadav
,
A.
, and
Winczek
,
J.
,
2020
, “
Effect of Sic Reinforcement and Its Variation on the Mechanical Characteristics of Az91 Composites
,”
Materials (Basel)
,
13
(
21
), pp.
1
16
.
49.
Balakrishnan
,
M.
,
Dinaharan
,
I.
,
Palanivel
,
R.
, and
Sivaprakasam
,
R.
,
2015
, “
Synthesize of AZ31/TiC Magnesium Matrix Composites Using Friction Stir Processing
,”
J. Magnesium Alloys
,
3
(
1
), pp.
76
78
.
50.
Yao
,
Y.
, and
Chen
,
L.
,
2014
, “
Processing of B4C Particulate-Reinforced Magnesium-Matrix Composites by Metal-Assisted Melt Infiltration Technique
,”
J. Mater. Sci. Technol.
,
30
(
7
), pp.
661
665
.
51.
Jiang
,
Q. C.
,
Wang
,
H. Y.
,
Ma
,
B. X.
,
Wang
,
Y.
, and
Zhao
,
F.
,
2005
, “
Fabrication of B4C Participate Reinforced Magnesium Matrix Composite by Powder Metallurgy
,”
J. Alloys Compd.
,
386
(
1–2
), pp.
177
181
.
52.
Paulo Hang Jutanaiman
,
S.
, and
Zulfia Syahrial
,
A.
,
2020
, “
Characteristics of Magnesium/B4C Reinforced Composite Fabricated by Stir Casting Method
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
924
(
1
), p.
012020
.
53.
Sakthi
,
S.
,
Mahendran
,
S.
,
Meignanamoorthy
,
M.
, and
Mohanavel
,
V.
,
2023
, “
Investigation of the Mechanical, Corrosion, and Tribological Characteristics of AZ61 Mg With Boron Carbide Nano Particles Via the Stir Casting Route
,”
Mater. Sci.
,
41
(
2
), pp.
227
243
.
54.
Meher
,
A.
,
Mahapatra
,
M. M.
,
Samal
,
P.
,
Vundavilli
,
P. R.
, and
Madavan
,
S. P.
,
2019
, “
Synthesis, Microstructure and Mechanical Properties of Magnesium Matrix Composites Fabricated by Stir Casting
,”
Mater. Today: Proc.
,
18
(
1
), pp.
4034
4041
.
55.
Sun
,
C.
,
Lu
,
N.
,
Liu
,
H.
,
Wang
,
X.
,
Hu
,
X.
, and
Chen
,
D.
,
2020
, “
Effect of Necklace-Type Distribution of SiC Particles As Cast on Dry Sliding Wear Behaviour of AZ91D/SiCp Composites
,”
Crystals
,
10
(
296
), pp.
1
16
.
56.
Kumar
,
A.
,
Kumar
,
S.
,
Mukhopadhyay
,
N. K.
,
Yadav
,
A.
,
Kumar
,
V.
, and
Winczek
,
J.
,
2021
, “
Effect of Variation of Sic Reinforcement on Wear Behaviour of Az91 Alloy Composites
,”
Materials (Basel)
,
14
(
4
), pp.
1
14
.
57.
Madhusudhan Reddy
,
G.
,
Sambasiva Rao
,
A.
, and
Srinivasa Rao
,
K.
,
2013
, “
Friction Stir Processing for Enhancement of Wear Resistance of ZM21 Magnesium Alloy
,”
Trans. Indian Inst. Met.
,
66
(
1
), pp.
13
24
.
58.
Zhang
,
L.
,
Luo
,
X.
,
Liu
,
J.
,
Leng
,
Y.
, and
An
,
L.
,
2018
, “
Dry Sliding Wear Behavior of Mg-SiC Nanocomposites With High Volume Fractions of Reinforcement
,”
Mater. Lett.
,
228
(
1
), pp.
112
115
.
59.
Karuppusamy
,
P.
,
Lingadurai
,
K.
, and
Sivananth
,
V.
,
2019
, “
To Study the Role of WC Reinforcement and Deep Cryogenic Treatment on AZ91 MMNC Wear Behavior Using Multilevel Factorial Design
,”
ASME J. Tribol.
,
141
(
4
), p.
041608
.
60.
Xiu
,
K.
,
Wang
,
H. Y.
,
Sui
,
H. L.
,
Wang
,
Y.
,
Xu
,
C. L.
,
Wang
,
J. G.
, and
Jiang
,
Q. C.
,
2006
, “
The Sliding Wear Behavior of TiCp/AZ91 Magnesium Matrix Composites
,”
J. Mater. Sci.
,
41
(
21
), pp.
7052
7058
.
61.
Banerjee
,
S.
,
Poria
,
S.
,
Sutradhar
,
G.
, and
Sahoo
,
P.
,
2019
, “
Dry Sliding Tribological Behavior of AZ31-WC Nano-Composites
,”
J. Magnesium Alloys
,
7
(
2
), pp.
315
327
.
62.
Jayasathyakawin
,
S.
, and
Ravichandran
,
M.
,
2023
, “
Fabrication and Wear Behaviour of Mg-3wt% Al-x Wt.% SiC Composites
,”
Heliyon
,
9
(
2
), p.
e13679
.
63.
Sklenička
,
V.
,
Svoboda
,
M.
,
Pahutová
,
M.
,
Kuchařová
,
K.
, and
Langdon
,
T. G.
,
2001
, “
Microstructural Processes in Creep of an AZ91 Magnesium-Based Composite and Its Matrix Alloy
,”
Mater. Sci. Eng. A
,
319
(
1
), pp.
741
745
.
64.
Ercetin
,
A.
, and
Pimenov
,
D. Y.
,
2021
, “
Microstructure, Mechanical, and Corrosion Behavior of Al2O3 Reinforced Mg2Zn Matrix Magnesium Composites
,”
Materials (Basel)
,
14
(
17
), p.
4819
.
65.
Niranjan
,
C. A.
,
Shobha
,
R.
,
Prabhuswamy
,
N. R.
,
Yogesh
,
H. M.
, and
Jain
,
V. K. S.
,
2023
, “
Reciprocating Dry Sliding Wear Behaviour of AZ91/Al2O3 Magnesium Nanocomposites
,”
Arab. J. Sci. Eng.
,
49
(
2
), pp.
2299
2310
.
66.
Paramsothy
,
M.
,
Chan
,
J.
,
Kwok
,
R.
, and
Gupta
,
M.
,
2011
, “
The Synergistic Ability of Al2O3 Nanoparticles to Enhance Mechanical Response of Hybrid Alloy AZ31/AZ91
,”
J. Alloys Compd.
,
509
(
28
), pp.
7572
7578
.
67.
Hassan
,
S. F.
, and
Gupta
,
M.
,
2005
, “
Development of High Performance Magnesium Nano-composites Using Nano-Al2O3 as Reinforcement
,”
Mater. Sci. Eng. A
,
392
(
1–2
), pp.
163
168
.
68.
Vara Prasad Kaviti
,
R.
,
Jeyasimman
,
D.
,
Parande
,
G.
,
Gupta
,
M.
,
Narayanasamy
,
R.
, and
Koppad
,
P. G.
,
2019
, “
Improving the Friction and Wear Characteristics of AZ31 Alloy With the Addition of Al2O3 Nanoparticles
,”
Mater. Res. Express
,
6
(
12
), p.
126505
.
69.
Pasha
,
M. B.
,
Rao
,
R. N.
,
Ismail
,
S.
,
Tekumalla
,
S.
, and
Gupta
,
M.
,
2022
, “
Tribological Behavior of Mg/Fe3O4 Recycled Nanocomposites Processed Through Turning Induced Deformation Technique
,”
ASME J. Tribol.
,
144
(
12
), p.
121702
.
70.
Kartheesan
,
S.
,
Shahul Hamid Khan
,
B.
,
Kamaraj
,
M.
,
Tekumalla
,
S.
, and
Gupta
,
M.
,
2022
, “
Dry Sliding Wear Behavior of Magnesium Nanocomposites Using Response Surface Methodology
,”
ASME J. Tribol.
,
144
(
1
), p.
011704
.
71.
Azizieh
,
M.
,
Larki
,
A. N.
,
Tahmasebi
,
M.
,
Bavi
,
M.
,
Alizadeh
,
E.
, and
Kim
,
H. S.
,
2018
, “
Wear Behavior of AZ31/Al2O3 Magnesium Matrix Surface Nanocomposite Fabricated Via Friction Stir Processing
,”
J. Mater. Eng. Perform.
,
27
(
4
), pp.
2010
2017
.
72.
Kruthiventi
,
S. S. H.
, and
Ammisetti
,
D. K.
,
2023
, “
Experimental Investigation and Machine Learning Modeling of Wear Characteristics of AZ91 Composites
,”
ASME J. Tribol.
,
145
(
10
), p.
101704
.
73.
Mardi
,
K.
,
Dixit
,
A.
,
Mallick
,
A.
, and
Reddy
,
A. R.
,
2018
, “
Effect of Al2O3 Nanoparticles on Tribological Behaviour of Mg-6Al Alloy-Based Nanocomposites
,”
Int. J. Surf. Sci. Eng.
,
12
(
5/6
), p.
402
.
74.
Ahmadkhaniha
,
D.
,
Heydarzadeh Sohi
,
M.
,
Salehi
,
A.
, and
Tahavvori
,
R.
,
2016
, “
Formations of AZ91/Al2O3 Nano-composite Layer by Friction Stir Processing
,”
J. Magnesium Alloys
,
4
(
4
), pp.
314
318
.
75.
Ding
,
Y.
,
Xu
,
J.
,
Hu
,
J.
,
Gao
,
Q.
,
Guo
,
X.
,
Zhang
,
R.
, and
An
,
L.
,
2020
, “
High Performance Carbon Nanotube-Reinforced Magnesium Nanocomposite
,”
Mater. Sci. Eng. A
,
771
(
Aug.
), p.
138575
.
76.
Habibi
,
M. K.
,
Paramsothy
,
M.
,
Hamouda
,
A. M. S.
, and
Gupta
,
M.
,
2011
, “
Using Integrated Hybrid (Al + CNT) Reinforcement to Simultaneously Enhance Strength and Ductility of Magnesium
,”
Compos. Sci. Technol.
,
71
(
5
), pp.
734
741
.
77.
Say
,
Y.
,
Guler
,
O.
, and
Dikici
,
B.
,
2020
, “
Carbon Nanotube (CNT) Reinforced Magnesium Matrix Composites: The Effect of CNT Ratio on Their Mechanical Properties and Corrosion Resistance
,”
Mater. Sci. Eng. A
,
798
(
1
), p.
139636
.
78.
Li
,
C. D.
,
Wang
,
X. J.
,
Wu
,
K.
,
Liu
,
W. Q.
,
Xiang
,
S. L.
,
Ding
,
C.
,
Hu
,
X. S.
, and
Zheng
,
M. Y.
,
2014
, “
Distribution and Integrity of Carbon Nanotubes in Carbon Nanotube/Magnesium Composites
,”
J. Alloys Compd.
,
612
(
1
), pp.
330
336
.
79.
Mance
,
S.
,
Dieringa
,
H.
,
Bohlen
,
J.
,
Gavras
,
S.
,
Stark
,
A.
,
Schell
,
N.
,
Pereira da Silva
,
J.
, and
Tolnai
,
D.
,
2022
, “
In Situ Synchrotron Radiation Diffraction Study of Compression of AZ91 Composites Reinforced With Recycled Carbon Fibres
,”
Crystals
,
12
(
11
), p.
1502
.
80.
Kandemir
,
S.
,
2018
, “
Development of Graphene Nanoplatelet-Reinforced AZ91 Magnesium Alloy by Solidification Processing
,”
J. Mater. Eng. Perform.
,
27
(
6
), pp.
3014
3023
.
81.
Shahin
,
M.
,
Wen
,
C.
,
Munir
,
K.
, and
Li
,
Y.
,
2022
, “
Mechanical and Corrosion Properties of Graphene Nanoplatelet-Reinforced Mg–Zr and Mg–Zr–Zn Matrix Nanocomposites for Biomedical Applications
,”
J. Magnesium Alloys
,
10
(
2
), pp.
458
477
.
82.
Zeng
,
X.
,
Zhou
,
G. H.
,
Xu
,
Q.
,
Xiong
,
Y.
,
Luo
,
C.
, and
Wu
,
J.
,
2010
, “
A New Technique for Dispersion of Carbon Nanotube in a Metal Melt
,”
Mater. Sci. Eng. A
,
527
(
20
), pp.
5335
5340
.
83.
Hou
,
J.
,
Du
,
W.
,
Parande
,
G.
,
Gupta
,
M.
, and
Li
,
S.
,
2019
, “
Significantly Enhancing the Strength + Ductility Combination of Mg-9Al Alloy Using Multi-walled Carbon Nanotubes
,”
J. Alloys Compd.
,
790
(
1
), pp.
974
982
.
84.
Huang
,
S. J.
,
Abbas
,
A.
, and
Ballóková
,
B.
,
2019
, “
Effect of CNT on Microstructure, Dry Sliding Wear and Compressive Mechanical Properties of AZ61 Magnesium Alloy
,”
J. Mater. Res. Technol.
,
8
(
5
), pp.
4273
4286
.
85.
Wang
,
C. R.
,
Deng
,
K. K.
, and
Bai
,
Y.
,
2019
, “
Microstructure, and Mechanical and Wear Properties of Grp/AZ91 Magnesium Matrix Composites
,”
Materials (Basel)
,
12
(
7
), pp.
1
16
.
86.
Jayaraman
,
J.
,
Kuppusamy
,
R.
, and
Rao
,
H.
,
2016
, “
Investigation on Wear Properties of AZ31-MWCNT Nanocomposites Fabricated Through Mechanical Alloying and Powder Metallurgy
,”
Sci. Eng. Compos. Mater.
,
23
(
1
), pp.
61
66
.
87.
Arab
,
M.
, and
Marashi
,
S. P. H.
,
2018
, “
Graphene Nanoplatelet (GNP)-Incorporated AZ31 Magnesium Nanocomposite: Microstructural, Mechanical and Tribological Properties
,”
Tribol. Lett.
,
66
(
4
), pp.
1
11
.
88.
Abbas
,
A.
,
Huang
,
S. J.
,
Ballóková
,
B.
, and
Sülleiová
,
K.
,
2020
, “
Tribological Effects of Carbon Nanotubes on Magnesium Alloy AZ31 and Analyzing Aging Effects on CNTs/AZ31 Composites Fabricated by Stir Casting Process
,”
Tribol. Int.
,
142
(
July
), p.
105982
.
89.
Selvamani
,
S. T.
,
Premkumar
,
S.
,
Vigneshwar
,
M.
,
Hariprasath
,
P.
, and
Palanikumar
,
K.
,
2017
, “
Influence of Carbon Nano Tubes on Mechanical, Metallurgical and Tribological Behavior of Magnesium Nanocomposites
,”
J. Magnesium Alloys
,
5
(
3
), pp.
326
335
.
90.
Vairamuthu
,
J.
,
Senthil Kumar
,
A.
,
Sivakumar
,
G. D.
,
Rajeshwaran
,
S. K.
, and
Subbiah
,
R.
,
2022
, “
Preparation and Characterization of AZ63A/Boron Nitride Composites Using Hybrid Mechanical and Ultrasonic Assisted Stir Casting
,”
Mater. Today: Proc.
,
59
(
1
), pp.
1513
1519
.
91.
Haghshenas
,
M.
,
Islam
,
R.
,
Wang
,
Y.
,
Cheng
,
Y. T.
, and
Gupta
,
M.
,
2019
, “
Depth Sensing Indentation of Magnesium/Boron Nitride Nanocomposites
,”
J. Compos. Mater.
,
53
(
13
), pp.
1751
1763
.
92.
Sankaranarayanan
,
S.
,
Sabat
,
R. K.
,
Jayalakshmi
,
S.
,
Suwas
,
S.
,
Almajid
,
A.
, and
Gupta
,
M.
,
2015
, “
Mg/BN Nanocomposites: Nano-BN Addition for Enhanced Room Temperature Tensile and Compressive Response
,”
J. Compos. Mater.
,
49
(
24
), pp.
3045
3055
.
93.
Vara Prasad Kaviti
,
R.
,
Jeyasimman
,
D.
,
Parande
,
G.
,
Gupta
,
M.
, and
Narayanasamy
,
R.
,
2018
, “
Investigation on Dry Sliding Wear Behavior of Mg/BN Nanocomposites
,”
J. Magnesium Alloys
,
6
(
3
), pp.
263
276
.
94.
Saravanan
,
H.
,
Ravichandran
,
M.
,
Veeman
,
D.
, and
Alagarsamy
,
S. V.
,
2023
, “
Investigations on Tribological Behaviour of ZK60A Mg Alloy-TiN Composites Synthesized Via Powder Metallurgy Technique
,”
Mater. Res.
,
26
(
1
), pp.
1
13
.
95.
Chen
,
S.
,
Wang
,
M.
,
Sun
,
L.
, and
Yao
,
Y.
,
2022
, “
Characterization of (B4C + Ti) Hybrid Reinforced Mg and AZ91D Composites
,”
Crystals
,
12
(
8
), p.
1105
.
96.
Li
,
J.
,
Wang
,
F.
,
Weng
,
W.
,
Zhang
,
Y.
,
Wang
,
M.
, and
Wang
,
H.
,
2012
, “
Characteristic and Mechanical Properties of Magnesium Matrix Composites Reinforced With Mg2B2O5w and B4Cp
,”
Mater. Des.
,
37
(
1
), pp.
533
536
.
97.
Satish
,
J.
, and
Satish
,
K. G.
,
2018
, “
Preparation of Magnesium Metal Matrix Composites by Powder Metallurgy Process
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
310
(
1
), p.
012130
.
98.
Cho
,
D. H.
,
Nam
,
J. H.
,
Lee
,
B. W.
,
Yim
,
S. O.
, and
Park
,
I. M.
,
2016
, “
Thermal Expansion Properties of Carbon Nanotube/Silicon Carbide Particle-Reinforced Magnesium Composites Fabricated by Squeeze Infiltration
,”
Met. Mater. Int.
,
22
(
2
), pp.
332
339
.
99.
Thakur
,
S. K.
,
Srivatsan
,
T. S.
, and
Gupta
,
M.
,
2007
, “
Synthesis and Mechanical Behavior of Carbon Nanotube-Magnesium Composites Hybridized With Nanoparticles of Alumina
,”
Mater. Sci. Eng. A
,
466
(
1–2
), pp.
32
37
.
100.
Aatthisugan
,
I.
,
Razal Rose
,
A.
, and
Selwyn Jebadurai
,
D.
,
2017
, “
Mechanical and Wear Behaviour of AZ91D Magnesium Matrix Hybrid Composite Reinforced With Boron Carbide and Graphite
,”
J. Magnesium Alloys
,
5
(
1
), pp.
20
25
.
101.
Abbasi
,
M.
,
Bagheri
,
B.
,
Dadaei
,
M.
,
Omidvar
,
H. R.
, and
Rezaei
,
M.
,
2015
, “
The Effect of FSP on Mechanical, Tribological, and Corrosion Behavior of Composite Layer Developed on Magnesium AZ91 Alloy Surface
,”
Int. J. Adv. Manuf. Technol.
,
77
(
9–12
), pp.
2051
2058
.
102.
Abebe
,
S. K.
,
Beri
,
H.
,
Sinha
,
D. K.
,
Rajhi
,
A. A.
,
Hossain
,
N.
,
Duhduh
,
A. A.
,
Zainuddin
,
S.
,
Mohammed
,
G.
, and
Ahmed
,
S.
,
2023
, “
Wear Behavior of AZ61 Matrix Hybrid Composite Fabricated Via Friction Stir Consolidation : A Combined RSM Box—Behnken and Genetic Algorithm Optimization
,”
J. Compos. Sci.
,
275
(
7
), pp.
1
18
.
103.
Girish
,
B. M.
,
Satish
,
B. M.
,
Sarapure
,
S.
,
Somashekar
,
D. R.
, and
Basawaraj
,
2015
, “
Wear Behavior of Magnesium Alloy AZ91 Hybrid Composite Materials
,”
Tribol. Trans.
,
58
(
3
), pp.
481
489
.
104.
Soorya Prakash
,
K.
,
Balasundar
,
P.
,
Nagaraja
,
S.
,
Gopal
,
P. M.
, and
Kavimani
,
V.
,
2016
, “
Mechanical and Wear Behaviour of Mg–SiC–Gr Hybrid Composites
,”
J. Magnesium Alloys
,
4
(
3
), pp.
197
206
.
105.
Turan
,
M. E.
,
Zengin
,
H.
, and
Sun
,
Y.
,
2020
, “
Dry Sliding Wear Behavior of (MWCNT + GNPs) Reinforced AZ91 Magnesium Matrix Hybrid Composites
,”
Met. Mater. Int.
,
26
(
4
), pp.
541
550
.
106.
Nai
,
M. H.
,
Wei
,
J.
, and
Gupta
,
M.
,
2014
, “
Interface Tailoring to Enhance Mechanical Properties of Carbon Nanotube Reinforced Magnesium Composites
,”
Mater. Des.
,
60
(
1
), pp.
490
495
.
107.
Sari
,
F. N.
,
Karamis
,
M. B.
, and
Kaya
,
Y.
,
2017
, “
Friction Characteristics of Hybrid Magnesium Alloy Composites Reinforced With Carbon Nanotube and Cerium
,”
Ind. Lubr. Tribol.
,
69
(
1
), pp.
52
58
.
108.
Ponnarengan
,
H.
,
Kannan
,
S.
, and
Kamaraj
,
L.
,
2024
, “
Assessing the Friction and Wear Behavior of AZ91-Based Hybrid Composites Reinforced With Nano HBN/Micron TiB2 Ceramic Particles Using WASPAS and ARAS Techniques
,”
Eng. Proc.
,
59
(
1
), p.
156
.
109.
Girish
,
B. M.
,
Satish
,
B. M.
,
Sarapure
,
S.
, and
Basawaraj
,
2016
, “
Optimization of Wear Behavior of Magnesium Alloy AZ91 Hybrid Composites Using Taguchi Experimental Design
,”
Metall. Mater. Trans. A
,
47
(
6
), pp.
3193
3200
.
110.
Khatkar
,
S. K.
,
Verma
,
R.
,
Kant
,
S.
, and
Suri
,
N. M.
,
2020
, “
Optimization of Wear Behavior of AZ91D-SiC-Gr Hybrid Composites Using Taguchi Experimental Design
,”
Adv. Intell. Syst. Comput.
,
1053
(
Feb.
), pp.
1151
1163
.
111.
Yin
,
N.
,
Xing
,
Z.
,
He
,
K.
, and
Zhang
,
Z.
,
2023
, “
Tribo-informatics Approaches in Tribology Research: A Review
,”
Friction
,
11
(
1
), pp.
1
22
.
112.
Pandiyan
,
V.
,
Prost
,
J.
,
Vorlaufer
,
G.
,
Varga
,
M.
, and
Wasmer
,
K.
,
2022
, “
Identification of Abnormal Tribological Regimes Using a Microphone and Semi-supervised Machine-Learning Algorithm
,”
Friction
,
10
(
4
), pp.
583
596
.
113.
Chang
,
H.
,
Borghesani
,
P.
, and
Peng
,
Z.
,
2020
, “
Automated Assessment of Gear Wear Mechanism and Severity Using Mould Images and Convolutional Neural Networks
,”
Tribol. Int.
,
147
(
1
), p.
106280
.
114.
Alambeigi
,
F.
,
Khadem
,
S. M.
,
Khorsand
,
H.
, and
Mirza Seied Hasan
,
E.
,
2016
, “
A Comparison of Performance of Artificial Intelligence Methods in Prediction of Dry Sliding Wear Behavior
,”
Int. J. Adv. Manuf. Technol.
,
84
(
9–12
), pp.
1981
1994
.
115.
Jurkovic
,
Z.
,
Cukor
,
G.
,
Brezocnik
,
M.
, and
Brajkovic
,
T.
,
2018
, “
A Comparison of Machine Learning Methods for Cutting Parameters Prediction in High Speed Turning Process
,”
J. Intell. Manuf.
,
29
(
8
), pp.
1683
1693
.
116.
Vara Prasad Kaviti
,
R.
,
Jeyasimman
,
D.
,
Ramesh Kumar
,
S. C.
, and
Mohan Babu
,
B. M.
,
2022
, “
Investigation of Wear Behaviour of Magnesium Reinforced With Boron Nitride Nanocomposite Using ANN
,”
J. Mines Met. Fuels
,
69
(
12A
), p.
190
.
117.
Aydin
,
F.
, and
Durgut
,
R.
,
2021
, “
Estimation of Wear Performance of AZ91 Alloy Under Dry Sliding Conditions Using Machine Learning Methods
,”
Trans. Nonferrous Met. Soc. China
,
31
(
1
), pp.
125
137
.
118.
Kavimani
,
V.
,
Prakash
,
K. S.
, and
Thankachan
,
T.
,
2019
, “
Experimental Investigations on Wear and Friction Behaviour of SiC@r-GO Reinforced Mg Matrix Composites Produced Through Solvent-Based Powder Metallurgy
,”
Composites Part B
,
162
(
1
), pp.
508
521
.
119.
Vignesh
,
R. V.
, and
Padmanaban
,
R.
,
2018
, “
Forecasting Tribological Properties of Wrought AZ91D Magnesium Alloy Using Soft Computing Model
,”
Russ. J. Non-Ferrous Met.
,
59
(
2
), pp.
135
141
.
You do not currently have access to this content.