Abstract

Sintered friction materials contribute to efficiency and effectiveness in various domains, encompassing high-performance racing cars, motorcycle clutches, industrial brakes designed for machinery and equipment, railroad brakes, aerospace components, and wind turbines. Heavy-duty applications include wind turbines that require friction material to slow down the speed of the high-speed shaft to zero rotation conditions. Currently, wind turbines employ Cu- and Fe-based sintered composite materials for effective braking. It is possible to customize the performance of sintered friction materials to fulfill particular needs by varying the material's composition, the sintering process parameters, and the surface treatments applied to the finished product. Engineers can enhance these attributes to attain certain objectives, such as a high coefficient of friction, low rates of wear, consistent performance across various operational circumstances, and resistance against thermal deterioration. Many significant advancements have been made today to improve the frictional performance of friction materials in wind turbines. Because failure of such a braking system results in robust failure of the wind turbine under harsh environmental conditions, consolidation of the novel formulations and their frictional performance of such developed friction materials is the need of the hour. In light of this view, we attempted to consolidate it. A comprehensive overview of formulation, microhardness, wear-rate, and friction coefficient are presented in this review article.

References

1.
Wei
,
Y.
,
Han
,
J.
, and
Chen
,
Z.
,
2025
, “
Research on the Temperature Rise Characteristics and Material Fatigue Damage of Steel Rail Under Different Contact Slip Ratios
,”
Eng. Fail. Anal.
,
169
, p.
109234
.
2.
Bilvatej
,
B.
,
Naveen
,
J.
,
Karthikeyan
,
N.
,
Norrrahim
,
M.
,
Knight
,
V. F.
,
Jawaid
,
M.
,
Sultan
,
M.
,
Dagalahal
,
M. R.
,
Chandrasekar
,
M.
, and
Loganathan
,
T. M.
,
2023
, “
Progress in Polymeric and Metallic Brake Pads: A Comprehensive Review
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
238
(
1
), pp.
3
25
.
3.
Mege-Revil
,
A.
,
Rapontchombo-Omanda
,
J.
,
Serrano-Munoz
,
I.
,
Cristol
,
A.-L.
,
Magnier
,
V.
, and
Dufrenoy
,
P.
,
2023
, “
Sintered Brake Pads Failure in High-Energy Dissipation Braking Tests: A Post-Mortem Mechanical and Microstructural Analysis
,”
Materials
,
16
(
21
), p.
7006
.
4.
Na
,
S. J.
,
Park
,
H. C.
, and
Kim
,
S. H.
,
2015
, “
Study of the Tribological Characteristics Based on the Hardness of the Brake Disk Between the Sintered Metallic Friction Material and the Heat-Resisting Steel Disks
,”
Tribol. Lubr.
,
31
(
2
), pp.
42
49
.
5.
Kryachek
,
V. M.
,
2005
, “
Friction Composites: Traditions and New Solutions (Review). Part 2. Composite Materials
,”
Powder Metall. Met. Ceram.
,
44
(
1–2
), pp.
5
16
.
6.
Sellami
,
A.
,
Kchaou
,
M.
,
Elleuch
,
R.
,
Cristol
,
A.-L.
, and
Desplanques
,
Y.
,
2014
, “
Study of the Interaction Between Microstructure, Mechanical and Tribo-Performance of a Commercial Brake Lining Material
,”
Mater. Des.
,
59
, pp.
84
93
.
7.
Czichos
,
H
,
1986
, “Introduction to Friction and Wear,”
Composite Materials Series
,
K.
Friedrich
, ed.,
Elsevier
,
New York
, pp.
1
23
.
8.
Szymański
,
P.
,
Czarnecka-Komorowska
,
D.
,
Gawdzińska
,
K.
,
Trubas
,
A.
, and
Kostecka
,
E.
,
2020
, “
A Review of Composite Materials Used in Brake Disc Pad Manufacturing Process
,”
Compos Theory Pract.
,
20
, pp.
60
66
.
9.
Liew
,
K.
, and
Nirmal
,
U.
,
2013
, “
Frictional Performance Evaluation of Newly Designed Brake Pad Materials
,”
Mater. Des.
,
48
, pp.
25
33
.
10.
Sathyamoorthy
,
G.
,
Vijay
,
R.
, and
Lenin Singaravelu
,
D.
,
2022
, “
Brake Friction Composite Materials: A Review on Classifications and Influences of Friction Materials in Braking Performance With Characterizations
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
236
(
8
), pp.
1674
1706
.
11.
Jadhav
,
S.
, and
Sawant
,
S.
,
2019
, “
A Review Paper: Development of Novel Friction Material for Vehicle Brake Pad Application to Minimize Environmental and Health Issues
,”
Mater. Today: Proc.
,
19
, pp.
209
212
.
12.
Kumar
,
M.
, and
Bijwe
,
J.
,
2013
, “
Optimized Selection of Metallic Fillers for Best Combination of Performance Properties of Friction Materials: A Comprehensive Study
,”
Wear
,
303
(
1–2
), pp.
569
583
.
13.
Wilhem
,
J.
, and
Loomis
,
A. V.
,
1975
,
Engineering
,
Materials Science
.
14.
Scharf
,
T.
, and
Prasad
,
S.
,
2013
, “
Solid Lubricants: A Review
,”
J. Mater. Sci.
,
48
(
2
), pp.
511
531
.
15.
Sunil
,
T.
,
Sandeep
,
M.
,
Kumaraswami
,
R.
, and
Shravan
,
A.
,
2016
, “
A Critical Review on Solid Lubricants
,”
Int. J. Mech. Eng. Technol.
,
7
, pp.
193
199
.
16.
Kumar
,
R.
,
Hussainova
,
I.
,
Rahmani
,
R.
, and
Antonov
,
M.
,
2022
, “
Solid Lubrication at High-Temperatures—A Review
,”
Materials
,
15
(
5
), p.
1695
.
17.
Manoharan
,
S.
,
Vijay
,
R.
,
Lenin Singaravelu
,
D.
, and
Kchaou
,
M.
,
2019
, “
Experimental Investigation on the Tribo-Thermal Properties of Brake Friction Materials Containing Various Forms of Graphite: A Comparative Study
,”
Arabian J. Sci. Eng.
,
44
(
2
), pp.
1459
1473
.
18.
Jaafar
,
T. R.
,
Zaharudin
,
A. M.
,
Pahmi
,
A.
,
Kasiran
,
R.
, and
Othman
,
E. A.
,
2018
, “
Effect of Carbon in Brake Friction Materials on Friction Characteristics
,”
Int. J. Eng. Sci.
,
14
, pp.
47
59
.
19.
Sugai
,
Y.
,
Iida
,
K.
,
Arai
,
M.
, and
Seki
,
K.
,
1996
, “
Friction Characteristics of Graphite for Brake Friction Materials
,”
J. Soc. Powder Technol. Japan
,
33
(
10
), pp.
782
787
.
20.
Antonyraj
,
I. J.
, and
Singaravelu
,
D. L.
,
2020
, “
Tribological Characterization of Various Solid Lubricants Based Copper-Free Brake Friction Materials—A Comprehensive Study
,”
Mater. Today: Proc.
,
27
, pp.
2650
2656
.
21.
Naguib
,
M.
,
Gad
,
S.
,
Megahed
,
M.
, and
Agwa
,
M.
,
2024
, “
Insights Into Particle Dispersion and Damage Mechanisms in Functionally Graded Metal Matrix Composites With Random Microstructure-Based Finite Element Model
,”
Sci. Rep.
,
14
(
1
), p.
20835
.
22.
Roy
,
R.
,
Agrawal
,
D.
,
Cheng
,
J.
, and
Gedevanishvili
,
S.
,
1999
, “
Full Sintering of Powdered-Metal Bodies in a Microwave Field
,”
Nature
,
399
(
6737
), pp.
668
670
.
23.
Eremenko
,
V. N.
,
Naĭdych
,
I. U. R. V.
, and
Lavrinenko
,
I. A.
,
1970
,
Liquid-Phase Sintering
,
Springer
,
New York
.
24.
Kingery
,
W.
,
1959
, “
Densification During Sintering in the Presence of a Liquid Phase. I. Theory
,”
J. Appl. Phys.
,
30
(
3
), pp.
301
306
.
25.
Olmos
,
L.
,
Martin
,
C. L.
, and
Bouvard
,
D.
,
2009
, “
Sintering of Mixtures of Powders: Experiments and Modelling
,”
Powder Technol.
,
190
(
1–2
), pp.
134
140
.
26.
Dynys
,
F. W.
, and
Halloran
,
J.
,
1984
, “
Influence of Aggregates on Sintering
,”
J. Am. Ceram. Soc.
,
67
(
9
), pp.
596
601
.
27.
Menapace
,
C.
,
Leonardi
,
M.
,
Perricone
,
G.
,
Bortolotti
,
M.
,
Straffelini
,
G.
, and
Gialanella
,
S.
,
2017
, “
Pin-on-Disc Study of Brake Friction Materials With Ball-Milled Nanostructured Components
,”
Mater. Des.
,
115
, pp.
287
298
.
28.
Ścieszka
,
S.
, and
Jankowski
,
A.
,
1996
, “
The Importance of Static Friction Characteristics of Brake Friction Couple, and Methods of Testing
,”
Tribotest
,
3
(
2
), pp.
137
148
.
29.
Hayama
,
F.
, and
Shikano
,
K.
,
1963
, “
Frictional Characteristics of Sintered Friction Materials
,”
J. Jpn Soc. Powder Powder Metall.
,
10
(
4
), pp.
160
166
.
30.
Vereschaka
,
A.
, and
Migranov
,
M. S.
,
2014
, “
Study of Wear Resistance of Sintered Powder Tool Materials
,”
Adv. Mater. Res.
,
871
, pp.
159
163
.
31.
Li
,
X.
, and
Olofsson
,
U.
,
2015
, “
FZG Gear Efficiency and Pin-on-Disc Frictional Study of Sintered and Wrought Steel Gear Materials
,”
Tribol. Lett.
,
60
, pp.
1
10
.
32.
Özen
,
A.
,
Topuz
,
A.
,
Kurt
,
Y. U.
, and
Zekeriyabeyoğlu
,
N.
,
2018
, “
Tribological Study of Sintered Iron Based and Copper Based Brake Materials by Pin-on-Disc Method
,”
Mater. Test.
,
60
(
2
), pp.
191
196
.
33.
Li
,
X.
,
Sosa
,
M.
, and
Olofsson
,
U.
,
2015
, “
A Pin-on-Disc Study of the Tribology Characteristics of Sintered Versus Standard Steel Gear Materials
,”
Wear
,
340
, pp.
31
40
.
34.
Neis
,
P.
,
Ferreira
,
N.
, and
Da Silva
,
F.
,
2014
, “
Comparison Between Methods for Measuring Wear in Brake Friction Materials
,”
Wear
,
319
(
1–2
), pp.
191
199
.
35.
Rhee
,
S. K.
,
1974
, “
Friction Coefficient of Automotive Friction Materials—Its Sensitivity to Load, Speed, and Temperature
,”
SAE Trans.
,
83
, pp.
1575
1580
. https://www.jstor.org/stable/44734463
36.
Ilie
,
F.
, and
Cristescu
,
A.-C.
,
2022
, “
Tribological Behavior of Friction Materials of a Disk-Brake Pad Braking System Affected by Structural Changes—A Review
,”
Materials
,
15
(
14
), p.
4745
.
37.
Musial
,
W.
, and
McNiff
,
B.
,
2000
,
Wind Turbine Testing in the NREL Dynamometer Test bed
,
National Renewable Energy Lab.(NREL)
,
Golden, CO
.
38.
Bossanyi
,
E.
,
Wright
,
A.
, and
Fleming
,
P.
,
2010
,
Controller Field Tests on the NREL CART2 Turbine
,
National Renewable Energy Lab.(NREL)
,
Golden, CO
.
39.
Wind Turbine Generator Systems – Part 1
,
1995
,
I. E. CENELEC
,
International Electrotechnical Commission
.
40.
Verma
,
P. C.
,
2016
,
Automotive Brake Materials: Characterization of Wear Products and Relevant Mechanisms at High Temperature
,
University of Trento
,
Italy
.
41.
Eyre
,
T.
, and
Walker
,
R.
,
1976
, “
Wear of Sintered Metals
,”
Powder Metall.
,
19
(
1
), pp.
22
30
.
42.
Balotin
,
J. G.
,
Neis
,
P. D.
, and
Ferreira
,
N. F.
,
2010
, “
Analysis of the Influence of Temperature on the Friction Coefficient of Friction Materials
,”
Proceedings of ABCM Symposium Series in Mechatronics
,
Brazil
,
Nov. 15–20
, pp.
898
906
.
43.
Satapathy
,
B.
, and
Bijwe
,
J.
,
2004
, “
Performance of Friction Materials Based on Variation in Nature of Organic Fibres: Part I. Fade and Recovery Behaviour
,”
Wear
,
257
(
5–6
), pp.
573
584
.
44.
Zhong
,
Z.
,
Jiang
,
X.
,
Sun
,
H.
,
Wu
,
Z.
,
Yang
,
L.
, and
Matamoros-Veloza
,
A.
,
2024
, “
Recent Research on the Optimization of Interfacial Structure and Interfacial Interaction Mechanisms of Metal Matrix Composites: A Review
,”
Adv. Eng. Mater.
,
26
(
23
), p.
2401392
.
45.
Verma
,
P. C.
,
Ciudin
,
R.
,
Bonfanti
,
A.
,
Aswath
,
P.
,
Straffelini
,
G.
, and
Gialanella
,
S.
,
2016
, “
Role of the Friction Layer in the High-Temperature Pin-on-Disc Study of a Brake Material
,”
Wear
,
346
, pp.
56
65
.
46.
Liu
,
T.
,
Rhee
,
S.
, and
Lawson
,
K.
,
1980
, “
A Study of Wear Rates and Transfer Films of Friction Materials
,”
Wear
,
60
(
1
), pp.
1
12
.
47.
Gomes Nogueira
,
A. P.
,
Carlevaris
,
D.
,
Menapace
,
C.
, and
Straffelini
,
G.
,
2020
, “
Tribological and Emission Behavior of Novel Friction Materials
,”
Atmosphere
,
11
(
10
), p.
1050
.
48.
Kchaou
,
M.
,
Sellami
,
A.
,
Fajoui
,
J.
,
Kus
,
R.
,
Elleuch
,
R.
, and
Jacquemin
,
F.
,
2019
, “
Tribological Performance Characterization of Brake Friction Materials: What Test? What Coefficient of Friction?
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
233
(
1
), pp.
214
226
.
49.
Lee
,
S.
, and
Jang
,
H.
,
2018
, “
Effect of Plateau Distribution on Friction Instability of Brake Friction Materials
,”
Wear
,
400
, pp.
1
9
.
50.
Straffelini
,
G.
, and
Straffelini
,
G.
,
2015
, “Wear Mechanisms,”
Friction and Wear: Methodologies for Design and Control
, pp.
85
113
.
51.
Kukutschova
,
J.
,
Roubíček
,
V.
,
Malachová
,
K.
,
Pavlíčková
,
Z.
,
Holuša
,
R.
,
Kubačková
,
J.
,
Mička
,
V.
,
MacCrimmon
,
D.
, and
Filip
,
P.
,
2009
, “
Wear Mechanism in Automotive Brake Materials, Wear Debris and Its Potential Environmental Impact
,”
Wear
,
267
(
5–8
), pp.
807
817
.
52.
Kato
,
K.
,
2005
, “Classification of Wear Mechanisms/Models,”
Wear–Materials, Mechanisms and Practice
, pp.
9
20
.
53.
Wilson
,
S.
, and
Alpas
,
A.
,
1997
, “
Wear Mechanism Maps for Metal Matrix Composites
,”
Wear
,
212
(
1
), pp.
41
49
.
54.
Barros
,
L. Y.
,
Poletto
,
J. C.
,
Buneder
,
D.
,
Flores
,
R.
,
Gehlen
,
G.
,
Neis
,
P. D.
,
Ferreira
,
N. F.
, and
Matozo
,
L. T.
,
2021
, “
An Experimental Study of the Transition in the Wear Regime of Brake Friction Materials
,”
Polym. Compos.
,
42
(
12
), pp.
6310
6321
.
55.
Wei
,
M.
,
Chen
,
K.
,
Wang
,
S.
, and
Cui
,
X.
,
2011
, “
Analysis for Wear Behaviors of Oxidative Wear
,”
Tribol. Lett.
,
42
(
1
), pp.
1
7
.
56.
Zhang
,
Q.
,
Chen
,
K.
,
Wang
,
L.
,
Cui
,
X.
, and
Wang
,
S.
,
2013
, “
Characteristics of Oxidative Wear and Oxidative Mildwear
,”
Tribol. Int.
,
61
, pp.
214
223
.
57.
Sudha
,
G.
,
Stalin
,
B.
,
Ravichandran
,
M.
, and
Balasubramanian
,
M.
,
2020
, “
Mechanical Properties, Characterization and Wear Behavior of Powder Metallurgy Composites—A Review
,”
Mater. Today: Proc.
,
22
, pp.
2582
2596
.
58.
Quinn
,
T.
,
1983
, “
Review of Oxidational Wear: Part I: The Origins of Oxidational Wear
,”
Tribol. Int.
,
16
(
5
), pp.
257
271
.
59.
Quinn
,
T.
,
1971
, “
Oxidational Wear
,”
Wear
,
18
(
5
), pp.
413
419
.
60.
Wang
,
S.
,
Wang
,
L.
,
Zhao
,
Y.
,
Sun
,
Y.
, and
Yang
,
Z.
,
2013
, “
Mild-to-Severe Wear Transition and Transition Region of Oxidative Wear in Steels
,”
Wear
,
306
(
1–2
), pp.
311
320
.
61.
Stott
,
F.
,
1998
, “
The Role of Oxidation in the Wear of Alloys
,”
Tribol. Int.
,
31
(
1–3
), pp.
61
71
.
62.
German
,
R. M.
,
2016
, “
Sintering Trajectories: Description on How Density, Surface Area, and Grain Size Change
,”
JOM
,
68
(
2
), pp.
878
884
.
63.
Lim
,
S.
,
2002
, “
The Relevance of Wear-Mechanism Maps to Mild-Oxidational Wear
,”
Tribol. Int.
,
35
(
11
), pp.
717
723
.
64.
Quinn
,
T.
,
Sullivan
,
J.
, and
Rowson
,
D.
,
1984
, “
Origins and Development of Oxidational Wear at Low Ambient Temperatures
,”
Wear
,
94
(
2
), pp.
175
191
.
65.
Fischer
,
T.
, and
Sexton
,
M.
,
1984
, “
Tribochemistry of Oxidative Wear
,”
Phys. Chem. Solid State: Appl. Met. Their Compd.
,
1984
(
32
), pp.
97
108
.
66.
Woydt
,
M.
,
Skopp
,
A.
,
Dörfel
,
I.
, and
Witke
,
K.
,
1998
, “
Wear Engineering Oxides/Anti-Wear Oxides
,”
Wear
,
218
(
1
), pp.
84
95
.
67.
Batchelor
,
A.
,
Stachowiak
,
G.
, and
Cameron
,
A.
,
1986
, “
The Relationship Between Oxide Films and the Wear of Steels
,”
Wear
,
113
(
2
), pp.
203
223
.
68.
Mølgaard
,
J.
, and
Srivastava
,
V.
,
1977
, “
The Activation Energy of Oxidation in Wear
,”
Wear
,
41
(
2
), pp.
263
270
.
69.
Lachowicz
,
M. M.
,
Zwierzchowski
,
M.
,
Smolik
,
J.
, and
Hawryluk
,
M.
,
2025
, “
Influence of Oxidation on the Tribological Wear of Hot Work Tool Steels in Sliding Contact: Implications for the Forming Process
,”
Arch. Civ. Mech. Eng.
,
25
(
1
), pp.
1
17
.
70.
Thuemmler
,
F.
,
1971
, “Application of Sintering Theory in Practice,”
2nd International Round Table Meeting of Sintering
, Herceg-Novi, Sept. 6–11, Institute of Materials Research KFK-1713.
71.
Braginsky
,
M.
,
Tikare
,
V.
, and
Olevsky
,
E.
,
2005
, “
Numerical Simulation of Solid State Sintering
,”
Int. J. Solids Struct.
,
42
(
2
), pp.
621
636
.
72.
Johnson
,
D. L.
,
1991
, “Solid-State Sintering,”
Concise Encyclopedia of Advanced Ceramic Materials
,
R. J.
Brook
, ed.,
Elsevier
,
New York
, pp.
454
458
.
73.
Coble
,
R.
,
2003
,
Diffusion Sintering in Solid State
,
MIT Press
.
74.
Kuczynski
,
G. C.
,
1990
, “Self-Diffusion in Sintering of Metallic Particles,”
Sintering key Papers
,
S.
Sōmiya
and
Y.
Moriyoshi
, eds.,
Springer
,
New York
, pp.
509
527
.
75.
German
,
R. M.
,
Suri
,
P.
, and
Park
,
S. J.
,
2009
, “
Liquid Phase Sintering
,”
J. Mater. Sci.
,
44
(
1
), pp.
1
39
.
76.
Kang
,
S. L.
,
2010
, “Liquid Phase Sintering,”
Sintering of Advanced Materials
,
Z. Z.
Fang
, ed.,
Elsevier
,
New York
, pp.
110
129
.
77.
Lakshmanan
,
A.
,
2012
,
Sintering in Ceramics
,
Intech Open
.
78.
Savitskii
,
A.
,
1999
,
Liquid-Phase Sintering of the Systems With Interacting Components
,
Springer
,
New York
.
79.
Burwell
J. T., Jr.
,
1957
, “
Survey of Possible Wear Mechanisms
,”
Wear
,
1
(
2
), pp.
119
141
.
80.
Aghababaei
,
R.
,
2019
, “
Effect of Adhesion on Material Removal During Adhesive Wear
,”
Phys. Rev. Mater.
,
3
(
6
), p.
063604
.
81.
Hogmark
,
S.
, and
Vingsbo
,
O.
,
1976
, “
Adhesive Mechanisms in the Wear of Some Tool Steels
,”
Wear
,
38
(
2
), pp.
341
359
.
82.
Finkin
,
E. F.
,
1972
, “
Speculations on the Theory of Adhesive Wear
,”
Wear
,
21
(
1
), pp.
103
114
.
83.
Popov
,
V. L.
,
Li
,
Q.
, and
Lyashenko
,
I. A.
,
2025
, “
Contact Mechanics and Friction: Role of Adhesion
,”
Friction
,
13
, p.
9440964
.
84.
Lee
,
G. Y.
,
Dharan
,
C.
, and
Ritchie
,
R. O.
,
2002
, “
A Physically-Based Abrasive Wear Model for Composite Materials
,”
Wear
,
252
(
3–4
), pp.
322
331
.
85.
Campos
,
K.
,
Kapsa
,
P.
,
Binder
,
C.
,
Klein
,
A.
, and
De Mello
,
J.
,
2015
, “
Tribological Evaluation of Self-Lubricating Sintered Steels
,”
Wear
,
332
, pp.
932
940
.
86.
Kchaou
,
M.
,
Sellami
,
A.
,
Elleuch
,
R.
, and
Singh
,
H.
,
2013
, “
Friction Characteristics of a Brake Friction Material Under Different Braking Conditions
,”
Mater. Des. (1980–2015)
,
52
, pp.
533
540
.
87.
Aleksendrić
,
D.
, and
Duboka
,
Č.
,
2007
, “
Fade Performance Prediction of Automotive Friction Materials by Means of Artificial Neural Networks
,”
Wear
,
262
(
7–8
), pp.
778
790
.
88.
Goo
,
B.-C.
,
Ryu
,
S.-S.
, and
Kim
,
S.
,
2013
, “
Development and Characterization of Sintered Friction Materials for Brake Pads
,”
Proceedings of 2013 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering
,
Emeishan, China
,
July 15–18
, pp.
803
807
.
89.
Lee
,
J.-H.
,
Park
,
M.-S.
, and
Yang
,
S.-H.
,
2004
, “
A Study on the Characteristic of Sintered Friction Materials
,”
Proceedings of the Spring and Autumn Conference of the Korean Society of Mechanical Engineering
, pp.
168
172
.
90.
Blau
,
P. J.
, and
Meyer
H. M., III
,
2003
, “
Characteristics of Wear Particles Produced During Friction Tests of Conventional and Unconventional Disc Brake Materials
,”
Wear
,
255
(
7–12
), pp.
1261
1269
.
91.
Lee
,
S.
,
Shin
,
M.
, and
Jang
,
H.
,
2013
, “
Friction-Induced Intermittent Motion Affected by Surface Roughness of Brake Friction Materials
,”
Wear
,
308
(
1–2
), pp.
29
34
.
92.
Kayaba
,
T.
,
Hokkirigawa
,
K.
, and
Kato
,
K.
,
1986
, “
Analysis of the Abrasive Wear Mechanism by Successive Observations of Wear Processes in a Scanning Electron Microscope
,”
Wear
,
110
(
3–4
), pp.
419
430
.
93.
Suh
,
N. P.
,
1977
, “
An Overview of the Delamination Theory of Wear
,”
Wear
,
44
(
1
), pp.
1
16
.
94.
Jahanmir
,
S.
,
Suh
,
N.
, and
Abrahamson Ii
,
E.
,
1975
, “
The Delamination Theory of Wear and the Wear of a Composite Surface
,”
Wear
,
32
(
1
), pp.
33
49
.
95.
Suh
,
N. P.
,
1973
, “
The Delamination Theory of Wear
,”
Wear
,
25
(
1
), pp.
111
124
.
96.
Gåård
,
A.
,
Hallbäck
,
N.
,
Krakhmalev
,
P.
, and
Bergström
,
J.
,
2010
, “
Temperature Effects on Adhesive Wear in Dry Sliding Contacts
,”
Wear
,
268
(
7–8
), pp.
968
975
.
97.
Markov
,
D.
, and
Kelly
,
D.
,
2000
, “
Mechanisms of Adhesion-Initiated Catastrophic Wear: Pure Sliding
,”
Wear
,
239
(
2
), pp.
189
210
.
98.
Podgornik
,
B.
,
2022
, “
Adhesive Wear Failures
,”
J. Fail. Anal. Prev.
,
22
(
1
), pp.
113
138
.
99.
Kovaříková
,
I.
,
Szewczyková
,
B.
,
Blaškoviš
,
P.
,
Hodulova
,
E.
, and
Lechovič
,
E.
,
2009
, “
Study and Characteristic of Abrasive Wear Mechanisms
,”
Mater. Sci. Technol.
,
1
, pp.
1
8
.
100.
Sin
,
H.
,
Saka
,
N.
, and
Suh
,
N.
,
1979
, “
Abrasive Wear Mechanisms and the Grit Size Effect
,”
Wear
,
55
(
1
), pp.
163
190
.
101.
Pintaude
,
G.
,
Albertin
,
E.
, and
Sinatora
,
A.
,
2005
, “
A Review on Abrasive Wear Mechanisms of Metallic Materials
,”
Proceedings of International Conference on Abrasion Wear Resistant Alloyed White Cast Iron for Rolling and Pulverizing Mills. IPT/EPUSP
,
Sao Paulo, Brazil
,
Mar. 19
.
102.
Dwyer-Joyce
,
R.
,
Sayles
,
R.
, and
Ioannides
,
E.
,
1994
, “
An Investigation Into the Mechanisms of Closed Three-Body Abrasive Wear
,”
Wear
,
175
(
1–2
), pp.
133
142
.
103.
Stott
,
F.
,
Glascott
,
J.
, and
Wood
,
G. C.
,
1985
, “
Models for the Generation of Oxides During Sliding Wear
,”
Proc. R. Soc. London, Ser. A
,
402
(
1822
), pp.
167
186
.
104.
Cho
,
M.
,
Cho
,
K.
,
Kim
,
S.
,
Kim
,
D.
, and
Jang
,
H.
,
2005
, “
The Role of Transfer Layers on Friction Characteristics in the Sliding Interface Between Friction Materials Against Gray Iron Brake Disks
,”
Tribol. Lett.
,
20
(
2
), pp.
101
108
.
105.
Singh
,
T.
,
Patnaik
,
A.
,
Gangil
,
B.
, and
Chauhan
,
R.
,
2015
, “
Optimization of Tribo-Performance of Brake Friction Materials: Effect of Nano Filler
,”
Wear
,
324
, pp.
10
16
.
106.
Zhao
,
Y.
,
Wang
,
S.
,
Yang
,
Z.
, and
Wei
,
M.
,
2010
, “
A New Delamination Pattern in Elevated-Temperature Oxidative Wear
,”
J. Mater. Sci.
,
45
(
1
), pp.
227
232
.
107.
Jayashree
,
P.
,
Bortolotti
,
M.
,
Turani
,
S.
, and
Straffelini
,
G.
,
2019
, “
High-Temperature Tribo-Oxidative Wear of a Cu-Based Metal-Matrix Composite Dry Sliding Against Heat-Treated Steel
,”
Tribol. Lett.
,
67
(
4
), pp.
1
12
.
108.
Tewari
,
A.
,
2012
, “
Load Dependence of Oxidative Wear in Metal/Ceramic Tribocouples in Fretting Environment
,”
Wear
,
289
, pp.
95
103
.
109.
Zhang
,
Z.
,
Zhang
,
L.
, and
Mai
,
Y.
,
1995
, “
Wear of Ceramic Particle-Reinforced Metal-Matrix Composites: Part I Wear Mechanisms
,”
J. Mater. Sci.
,
30
(
8
), pp.
1961
1966
.
110.
Stott
,
F.
,
2002
, “
High-Temperature Sliding Wear of Metals
,”
Tribol. Int.
,
35
(
8
), pp.
489
495
.
111.
Devaraju
,
A.
,
2015
, “
A Critical Review on Different Types of Wear of Materials
,”
Int. J. Mech. Eng. Technol.
,
6
(
11
), pp.
77
83
.
112.
Ryzhkin
,
A.
,
Burlakova
,
V.
, and
Novikova
,
A.
,
2018
, “
Wear and Performance of Hard Alloys
,”
Russ. Eng. Res.
,
38
(
6
), pp.
438
441
.
113.
Bill
,
R. C.
,
1981
, “
The Role of Oxidation in the Fretting Wear Process
,”
Proceedings of International Conference on Wear of Materials
,
San Francisco, CA
,
Mar. 30-Apr. 1
.
114.
Saka
,
N.
,
Eleiche
,
A.
, and
Suh
,
N.
,
1977
, “
Wear of Metals at High Sliding Speeds
,”
Wear
,
44
(
1
), pp.
109
125
.
115.
Zhu
,
M.
, and
Zhou
,
Z.
,
2011
, “
On the Mechanisms of Various Fretting Wear Modes
,”
Tribol. Int.
,
44
(
11
), pp.
1378
1388
.
116.
Yotkeaw
,
T.
,
Tosangthum
,
N.
,
Krataitong
,
R.
,
Morakotjinda
,
M.
,
Prapai
,
J.
, and
Tongsri
,
R.
,
2013
, “
Sintered Frictional Materials Based on Cu Powders
,”
Adv. Mater. Res.
,
747
, pp.
55
58
.
117.
Lee
,
J.-H.
,
Choi
,
B.-H.
, and
Kim
,
J.
,
1997
, “
A Study on the Development of Cu-Based Sintered Friction Materials
,”
Trans. Korean Soc. Mech. Eng. A
,
21
(
1
), pp.
83
92
.
118.
Gyimah
,
G. K.
,
Chen
,
D.
, and
Huang
,
P.
,
2013
, “
Dry Sliding Studies of Porosity on Sintered Cu-Based Brake Materials
,”
Int. J. Mech. Eng.
,
4
(
2
), pp.
521
529
.
119.
Aiwen
,
Z.
,
Pingping
,
Y.
,
Yelong
,
X.
,
Zhongyi
,
Z.
,
Haibin
,
Z.
,
Kunyang
,
F.
,
Taimin
,
G.
, and
Lin
,
Z.
,
2017
, “
Tribological Behaviors and Reliability Life of Cu-Based Sintered Materials for Space Applications in Air
,”
Tribology
,
37
(
5
), pp.
686
694
.
120.
Glascott
,
J.
,
Stott
,
F.
, and
Wood
,
G.
,
1985
, “
The Effectiveness of Oxides in Reducing Sliding Wear of Alloys
,”
Oxid. Met.
,
24
(
3–4
), pp.
99
114
.
121.
Canakci
,
A.
,
Cuvalci
,
H.
,
Varol
,
T.
,
Erdemir
,
F.
,
Ozkaya
,
S.
, and
Yalcin
,
E.
,
2014
, “
Microstructure and Abrasive Wear Behavior of CuSn10–Graphite Composites Produced by Powder Metallurgy
,”
Powder Metall. Met. Ceram.
,
53
(
5–6
), pp.
275
287
.
122.
Zhang
,
N.
,
Hu
,
Z.
,
Du
,
J.
,
Zhang
,
W.
,
Han
,
J.
, and
Ji
,
Z.
, “
Wear Mechanism of Copper-Based Powder Metallurgical Friction Materials With Different Graphite Content
,”
Proc. J. Phys.: Conf. Ser.
,
1622
(
1
), p.
012005
.
123.
Kováčik
,
J.
,
Emmer
,
Š
,
Bielek
,
J.
, and
Keleši
,
L. U.
,
2008
, “
Effect of Composition on Friction Coefficient of Cu–Graphite Composites
,”
Wear
,
265
(
3–4
), pp.
417
421
.
124.
Xiao
,
J.-K.
,
Zhang
,
W.
,
Liu
,
L.-M.
,
Zhang
,
L.
, and
Zhang
,
C.
,
2017
, “
Tribological Behavior of Copper-Molybdenum Disulfide Composites
,”
Wear
,
384
, pp.
61
71
.
125.
Cao
,
H.
,
Qian
,
Z.
,
Zhang
,
L.
,
Xiao
,
J.
, and
Zhou
,
K.
,
2014
, “
Tribological Behavior of Cu Matrix Composites Containing Graphite and Tungsten Disulfide
,”
Tribol. Trans.
,
57
(
6
), pp.
1037
1043
.
126.
Chen
,
B.
,
Bi
,
Q.
,
Yang
,
J.
,
Xia
,
Y.
, and
Hao
,
J.
,
2008
, “
Tribological Properties of Solid Lubricants (Graphite, h-BN) for Cu-Based P/M Friction Composites
,”
Tribol. Int.
,
41
(
12
), pp.
1145
1152
.
127.
Suiyuan
,
C.
,
Jing
,
W.
,
Yijie
,
L.
,
Jing
,
L.
, and
Changsheng
,
L.
,
2011
, “
Synthesis of New Cu-Based Self-Lubricating Composites With Great Mechanical Properties
,”
J. Compos. Mater.
,
45
(
1
), pp.
51
63
.
128.
Zhang
,
X.
,
Zhang
,
Y.
,
Du
,
S.
,
He
,
T.
, and
Yang
,
Z.
,
2018
, “
Influence of Braking Conditions on Tribological Performance of Copper-Based Powder Metallurgical Braking Material
,”
J. Mater. Eng. Perform.
,
27
(
9
), pp.
4473
4480
.
129.
Zhang
,
X.
,
Zhang
,
Y.
,
Du
,
S.
,
Yang
,
Z.
,
He
,
T.
, and
Li
,
Z.
,
2018
, “
Study on the Tribological Performance of Copper-Based Powder Metallurgical Friction Materials With Cu-Coated or Uncoated Graphite Particles as Lubricants
,”
Materials
,
11
(
10
), p.
2016
.
130.
Wu
,
J.
,
Yang
,
H.
,
Dong
,
P.
,
Fang
,
Y.
,
Zhang
,
X.
,
Zhang
,
J.
,
Zhang
,
C.
, and
Xu
,
B.
,
2025
, “
Effect of Various Compositions on High-Temperature Wear Failure Mechanism of Copper-Based Friction Components
,”
Eng. Fail. Anal.
,
170
, p.
109275
.
131.
Kwabena Gyimah
,
G.
,
Huang
,
P.
, and
Chen
,
D.
,
2014
, “
Dry Sliding Wear Studies of Copper-Based Powder Metallurgy Brake Materials
,”
ASME J. Tribol.
,
136
(
4
), p.
041601
.
132.
Xiong
,
X.
,
Sheng
,
H.-C.
,
Jie
,
C.
, and
Yao
,
P.-P.
,
2007
, “
Effects of Sintering Pressure and Temperature on Microstructure and Tribological Characteristic of Cu-Based Aircraft Brake Material
,”
Trans. Nonferrous Met. Soc. China
,
17
(
4
), pp.
669
675
.
133.
Chen
,
Q.
,
Shang
,
J.
, and
Xue
,
E.
,
2024
, “
Tribological Behavior and Wear Mechanism of Cu-SiO2 Sintered Composite Under Different Sliding Speeds
,”
Crystals
,
14
(
3
), p.
232
.
134.
Fu
,
R.
,
Gao
,
F.
, and
Song
,
B. Y.
,
2011
, “
Study on Friction Properties of Cu-Fe-Based Powder Metallurgy Materials Under dry and Wet Friction Conditions
,”
Adv. Mater. Res.
,
150
, pp.
1806
1809
.
135.
Zhao
,
S.
,
Yan
,
Q.
,
Peng
,
T.
,
Zhang
,
X.
, and
Wen
,
Y.
,
2020
, “
The Braking Behaviors of Cu-Based Powder Metallurgy Brake Pads Mated with C/C–SiC Disk for High-Speed Train
,”
Wear
,
448
, p.
203237
.
136.
Akhtar
,
F.
,
Askari
,
S. J.
,
Shah
,
K. A.
,
Du
,
X.
, and
Guo
,
S.
,
2009
, “
Microstructure, Mechanical Properties, Electrical Conductivity and Wear Behavior of High Volume TiC Reinforced Cu-Matrix Composites
,”
Mater. Charact.
,
60
(
4
), pp.
327
336
.
137.
Ravichandran
,
M.
,
Alagarsamy
,
S.
,
Dhinakaran
,
V.
,
Abdul Samad
,
M.
, and
Katiyar
,
J. K.
,
2022
, “
Optimization of Tribological Process Parameters of Titanium Carbide Reinforced Copper Matrix Composites
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
236
(
9
), pp.
1737
1751
.
138.
Bagheri
,
G. A.
,
2016
, “
The Effect of Reinforcement Percentages on Properties of Copper Matrix Composites Reinforced With TiC Particles
,”
J. Alloys Compd.
,
676
, pp.
120
126
.
139.
Somani
,
N.
, and
Gupta
,
N. K.
,
2022
, “
Effect of TiC Nanoparticles on Microstructural and Tribological Properties of Cu-TiC Nano-Composites
,”
Proc. Inst. Mech. Eng. B
,
236
(
4
), pp.
319
336
.
140.
Islak
,
S.
,
Kır
,
D.
, and
Buytoz
,
S.
,
2014
, “
Effect of Sintering Temperature on Electrical and Microstructure Properties of Hot Pressed Cu-TiC Composites
,”
Sci. Sinter.
,
46
(
1
), pp.
15
21
.
141.
Jha
,
P.
,
Gautam
,
R. K.
, and
Tyagi
,
R.
,
2017
, “
Friction and Wear Behavior of Cu–4 wt% Ni–TiC Composites Under Dry Sliding Conditions
,”
Friction
,
5
(
4
), pp.
437
446
.
142.
Zhuang
,
J.
,
Liu
,
Y. B.
,
Cao
,
Z. Y.
, and
Li
,
Y. Y.
,
2011
, “
Microstructure and Wear Resistance of Cu-TiC Composites Fabricated by Mechanical Alloying and Spark Plasma Sintering
,”
Adv. Mater. Res.
,
213
, pp.
524
528
.
143.
Buytoz
,
S.
,
Dagdelen
,
F.
,
Islak
,
S.
,
Kok
,
M.
,
Kir
,
D.
, and
Ercan
,
E.
,
2014
, “
Effect of the TiC Content on Microstructure and Thermal Properties of Cu–TiC Composites Prepared by Powder Metallurgy
,”
J. Therm. Anal. Calorim.
,
117
(
3
), pp.
1277
1283
.
144.
Rajkumar
,
K.
, and
Aravindan
,
S.
,
2011
, “
Tribological Performance of Microwave Sintered Copper–TiC–Graphite Hybrid Composites
,”
Tribol. Int.
,
44
(
4
), pp.
347
358
.
145.
Kumar
,
V.
,
Yadav
,
G.
, and
Gupta
,
P.
,
2023
, “
Microstructure and Wear Analysis of Copper-Graphite-Titanium Carbide Hybrid Metal Matrix Composites Fabricated by Powder Metallurgy (P/M) Technique
,”
ECS J. Solid State Sci. Technol.
,
12
(
3
), p.
037001
.
146.
Ankit Gautam
,
G.
,
Singh
,
K. K.
, and
Mohan
,
S.
,
2023
, “
Synergetic Influence of TiCnp and Graphite Particles on Tribological Performance of Cu Based Composites Prepared by Flake Powder Metallurgy
,”
Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng.
,
238
(
4
), pp.
1809
1820
.
147.
Nayak
,
D.
,
Ray
,
N.
,
Sahoo
,
R.
, and
Debata
,
M.
,
2014
, “
Analysis of Tribological Performance of Cu Hybrid Composites Reinforced With Graphite and TiC Using Factorial Techniques
,”
Tribol. Trans.
,
57
(
5
), pp.
908
918
.
148.
Kennedy
,
F.
,
Balbahadur
,
A.
, and
Lashmore
,
D.
,
1997
, “
The Friction and Wear of Cu-Based Silicon Carbide Particulate Metal Matrix Composites for Brake Applications
,”
Wear
,
203
, pp.
715
721
.
149.
Tjong
,
S.
, and
Lau
,
K.
,
2000
, “
Tribological Behaviour of SiC Particle-Reinforced Copper Matrix Composites
,”
Mater. Lett.
,
43
(
5–6
), pp.
274
280
.
150.
Dhokey
,
N.
, and
Paretkar
,
R.
,
2008
, “
Study of Wear Mechanisms in Copper-Based SiCp (20% by Volume) Reinforced Composite
,”
Wear
,
265
(
1–2
), pp.
117
133
.
151.
Shabani
,
M.
,
Paydar
,
M. H.
,
Zamiri
,
R.
,
Goodarzi
,
M.
, and
Moshksar
,
M. M.
,
2016
, “
Microstructural and Sliding Wear Behavior of SiC-Particle Reinforced Copper Matrix Composites Fabricated by Sintering and Sinter-Forging Processes
,”
J. Mater. Res. Technol.
,
5
(
1
), pp.
5
12
.
152.
Ayyappadas
,
C.
,
Annamalai
,
A. R.
,
Agrawal
,
D. K.
, and
Muthuchamy
,
A.
,
2017
, “
Conventional and Microwave Assisted Sintering of Copper-Silicon Carbide Metal Matrix Composites: A Comparison
,”
Metall. Res. Technol.
,
114
(
5
), p.
506
.
153.
Rajesh
,
R.
,
Shankar
,
B.
,
Rajeev
,
A. K.
,
Govind
,
V.
,
Shankar
,
K. V.
,
George
,
N.
, and
Vijay
,
R.
,
2023
, “
Morphological, Hardness, and Wear Behavior of Cu–Sn–SiC Metal Matrix Composite Developed by Microwave Processing
,”
Trans. Indian Inst. Met.
,
76
(
9
), pp.
2401
2412
.
154.
Efe
,
G. C.
,
İpek
,
M.
,
Zeytin
,
S.
, and
Bindal
,
C.
,
2012
, “
An Investigation of the Effect of SiC Particle Size on Cu–SiC Composites
,”
Composites, Part B
,
43
(
4
), pp.
1813
1822
.
155.
Efe
,
G. C.
,
Yener
,
T.
,
Altinsoy
,
I.
,
İpek
,
M.
,
Zeytin
,
S.
, and
Bindal
,
C.
,
2011
, “
The Effect of Sintering Temperature on Some Properties of Cu–SiC Composite
,”
J. Alloys Compd.
,
509
(
20
), pp.
6036
6042
.
156.
Azreen
,
A. F.
,
Sutjipto
,
A. G. E.
, and
Adesta
,
E. Y. T.
,
2011
, “
Fabrication of CuSiC Composite by Powder Metallurgy Route
,”
Adv. Mater. Res.
,
264
, pp.
748
753
.
157.
Şap
,
S.
,
Uzun
,
M.
,
Usca
,
Ü. A.
,
Pimenov
,
D. Y.
,
Giasin
,
K.
, and
Wojciechowski
,
S.
,
2021
, “
Investigation on Microstructure, Mechanical, and Tribological Performance of Cu Base Hybrid Composite Materials
,”
J. Mater. Res. Technol.
,
15
, pp.
6990
7003
.
158.
Zhan
,
Y.
, and
Zhang
,
G.
,
2004
, “
Friction and Wear Behavior of Copper Matrix Composites Reinforced With SiC and Graphite Particles
,”
Tribol. Lett.
,
17
(
1
), pp.
91
98
.
159.
Zhan
,
Y.
, and
Zhang
,
G.
,
2003
, “
Graphite and SiC Hybrid Particles Reinforced Copper Composite and Its Tribological Characteristic
,”
J. Mater. Sci. Lett.
,
22
(
15
), pp.
1087
1089
.
160.
Xiao
,
J.-K.
,
Xiao
,
S.-X.
,
Chen
,
J.
, and
Zhang
,
C.
,
2020
, “
Wear Mechanism of Cu-Based Brake pad for High-Speed Train Braking at Speed of 380 km/h
,”
Tribol. Int.
,
150
, p.
106357
.
161.
Thiraviam
,
R.
,
Sornakumar
,
T.
, and
Senthil Kumar
,
A.
,
2008
, “
Development of Copper: Alumina Metal Matrix Composite by Powder Metallurgy Method
,”
Int. J. Mater. Prod. Technol.
,
31
(
2–4
), pp.
305
313
.
162.
Upadhyaya
,
A.
, and
Upadhyaya
,
G.
,
1995
, “
Sintering of Copper-Alumina Composites Through Blending and Mechanical Alloying Powder Metallurgy Routes
,”
Mater. Des.
,
16
(
1
), pp.
41
45
.
163.
Dash
,
K.
,
Panda
,
S.
, and
Ray
,
B.
,
2013
, “
Process and Progress of Sintering Behavior of Cu-Al2O3 Composites
,”
Emerging Mater. Res.
,
2
(
1
), pp.
32
38
.
164.
Chen
,
S.-Z.
,
Lin
,
J.-H. C.
, and
Ju
,
C.-P.
,
2003
, “
Effect of Graphite Content on the Tribological Behavior of a Cu-Fe-C Based Friction Material Sliding Against FC30 Cast Iron
,”
Mater. Trans.
,
44
(
6
), pp.
1225
1230
.
165.
Prajapati
,
P.
, and
Chaira
,
D.
,
2019
, “
Fabrication and Characterization of Cu–B4C Metal Matrix Composite by Powder Metallurgy: Effect of B4C on Microstructure, Mechanical Properties and Electrical Conductivity
,”
Trans. Indian Inst. Met.
,
72
(
3
), pp.
673
684
.
166.
Dinaharan
,
I.
, and
Albert
,
T.
,
2023
, “
Effect of Reinforcement Type on Microstructural Evolution and Wear Performance of Copper Matrix Composites via Powder Metallurgy
,”
Mater. Today Commun.
,
34
, p.
105250
.
167.
Wu
,
J.
,
Li
,
Z.
,
Wen
,
G.
,
Gao
,
Z.
,
Li
,
Y.
, and
Zhao
,
Y.
,
2023
, “
Friction Mechanism Analysis of Copper-Based Composites Reinforced With Ball-Milled and Modified Composite Ceramic Powders
,”
Wear
,
528
, p.
204959
.
168.
Balamurugan
,
P.
, and
Uthayakumar
,
M.
,
2015
, “
Influence of Process Parameters on Cu–Fly Ash Composite by Powder Metallurgy Technique
,”
Mater. Manuf. Processes
,
30
(
3
), pp.
313
319
.
169.
Rajan
,
S. T. K.
,
Balaji
,
A.
,
Raghav
,
G.
, and
Vettivel
,
S.
,
2019
, “
Compression and Corrosion Behaviour of Sintered Copper-Fly Ash Composite Material
,”
Mater. Res. Express
,
6
(
4
), p.
046524
.
170.
Dinaharan
,
I.
,
Albert
,
T.
, and
David Raja Selvam
,
J.
,
2023
, “
Microstructure and Wear Performance of Fly Ash-Reinforced Copper Matrix Composites Prepared via Powder Metallurgy
,”
J. Mater. Eng. Perform.
,
33
(
24
), pp.
14161
14176
.
171.
Chew
,
P.
,
Zahi
,
S.
,
You
,
A.
,
Lim
,
P.
, and
Ng
,
M.
,
2010
, “
Preparation of Cu and Fly Ash Composite by Powder Metallurgy Technique
,”
AIP Conference Proceedings
,
Malaysia
,
Oct. 27–30
, pp.
208
210
.
172.
Sai
,
N. V.
,
Komaraiah
,
M.
, and
Raju
,
A. S. R.
,
2008
, “
Preparation and Properties of Sintered Copper–Tin Composites Containing Copper Coated or Uncoated Fly Ash
,”
Mater. Manuf. Processes
,
23
(
7
), pp.
651
657
.
173.
Rajesh
,
K. K.
,
Vaira
,
V. R.
,
Govindaraju
,
M.
, and
Samuel
,
R. K. P.
,
2023
, “
Influence of Rare Earth Oxide and Graphite on the Mechanical and Tribological Properties of Fe/Cu Based Sintered Friction Materials
,”
Sci. Sinter.
,
56
(
1
), pp.
15
30
.
174.
Wu
,
J.
,
Zhou
,
Y.
, and
Wang
,
J.
,
2006
, “
Tribological Behavior of Ti2SnC Particulate Reinforced Copper Matrix Composites
,”
Mater. Sci. Eng. A
,
422
(
1–2
), pp.
266
271
.
175.
Wei
,
H.
,
Zou
,
J.
,
Gong
,
Y.
,
Li
,
X.
,
Zhan
,
W.
, and
Li
,
F.
,
2022
, “
Effects of Ti2SnC on the Mechanical Properties and Tribological Properties of Copper/Graphite Composites
,”
Ceram. Int.
,
48
(
24
), pp.
36853
36859
.
176.
Xiao
,
Y.
,
Cheng
,
Y.
,
Shen
,
M.
,
Yao
,
P.
,
Du
,
J.
,
Ji
,
D.
,
Zhao
,
H.
,
Liu
,
S.
, and
Hua
,
L.
,
2022
, “
Friction and Wear Behavior of Copper Metal Matrix Composites at Temperatures up to 800 C
,”
J. Mater. Res. Technol.
,
19
, pp.
2050
2062
.
177.
Zhang
,
P.
,
Zhang
,
L.
,
Wei
,
D.
,
Wu
,
P.
,
Cao
,
J.
,
Shijia
,
C.
,
Qu
,
X.
, and
Fu
,
K.
,
2019
, “
The Synergistic Effect of Cr and CrFe Particles on the Braking Behavior of Cu-Based Powder Metallurgy Brake Pads
,”
Tribol. Trans.
,
62
(
6
), pp.
1072
1085
.
178.
Xiao
,
Y.
,
Zhang
,
Z.
,
Yao
,
P.
,
Fan
,
K.
,
Zhou
,
H.
,
Gong
,
T.
,
Zhao
,
L.
, and
Deng
,
M.
,
2018
, “
Mechanical and Tribological Behaviors of Copper Metal Matrix Composites for Brake Pads Used in High-Speed Trains
,”
Tribol. Int.
,
119
, pp.
585
592
.
179.
Usca
,
ÜA
,
Uzun
,
M.
,
Kuntoğlu
,
M.
,
Şap
,
S.
,
Giasin
,
K.
, and
Pimenov
,
D. Y.
,
2021
, “
Tribological Aspects, Optimization and Analysis of Cu-B-CrC Composites Fabricated by Powder Metallurgy
,”
Materials
,
14
(
15
), p.
4217
.
180.
Wannik
,
W.
,
Ayob
,
A.
,
Syahrullail
,
S.
,
Masjuki
,
H.
, and
Ahmad
,
M.
,
2012
, “
The Effect of Boron Friction Modifier on the Performance of Brake Pads
,”
Int. J. Mech. Mater. Eng.
,
7
(
1
), pp.
31
35
.
181.
Guo
,
Z.
,
Li
,
N.
, and
Hu
,
J.
,
2015
, “
CU-TiB Metal Matrix Composites Prepared by Powder Metallurgy Route
,”
Sci. Sinter.
,
47
(
2
), pp.
165
174
.
182.
Kannan
,
K. R.
,
Vignesh
,
R. V.
,
Kalyan
,
K. P.
,
Murugesan
,
J.
,
Megalingam
,
A.
,
Padmanaban
,
R.
, and
Govindaraju
,
M.
, “
Tribological Performance of Heavy-Duty Functionally Gradient Friction Material (Cu-Sn-Fe-Cg-SiC-Al2O3) Synthesized by PM Route
,”
Proc. AIP Conf. Proc.
,
2128
(
1
),
020004
.
183.
Rajesh Kannan
,
K.
,
Vaira Vignesh
,
R.
, and
Govindaraju
,
M.
,
2023
, “
Tribological Characteristics of Copper-Based Functionally Gradient Material for Wind Turbines Brake Pads
,”
ASME J. Tribol.
,
145
(
6
), p.
061703
.
184.
Kasi
,
R. K.
,
Murugesan
,
N. K.
,
Jeyakanapathy
,
A.
, and
Ramalingam
,
V. V.
,
2024
, “
Development of Functionally Gradient Cu-Fe Based Sintered Brake Pad Materials
,”
Phys. Scr.
,
99
(
6
), p.
061501
.
185.
Chandhan Kumar
,
V.
,
Rajesh Kannan
,
K.
,
Srivathsan
,
G.
,
Vignesh Ram
,
A.
,
Sravan
,
V.
,
Vaira Vignesh
,
R.
, and
Govindaraju
,
M.
,
2023
, “
Tribological Characterization of Functionally Gradient Composite (Cu–Fe–CeO2–Al2O3–Cg) for Wind Turbine Brake Pad
,”
Tribol. Mater. Surf. Interfaces
,
17
(
1
), pp.
3
21
.
186.
Prabhu
,
T. R.
,
Varma
,
V.
, and
Vedantam
,
S.
,
2014
, “
Tribological and Mechanical Behavior of Multilayer Cu/SiC+ Gr Hybrid Composites for Brake Friction Material Applications
,”
Wear
,
317
(
1–2
), pp.
201
212
.
187.
Moustafa
,
S.
,
El-Badry
,
S.
,
Sanad
,
A.
, and
Kieback
,
B.
,
2002
, “
Friction and Wear of Copper–Graphite Composites Made With Cu-Coated and Uncoated Graphite Powders
,”
Wear
,
253
(
7–8
), pp.
699
710
.
188.
Moustafa
,
S.
,
Abdel-Hamid
,
Z.
, and
Abd-Elhay
,
A.
,
2002
, “
Copper Matrix SiC and Al2O3 Particulate Composites by Powder Metallurgy Technique
,”
Mater. Lett.
,
53
(
4–5
), pp.
244
249
.
189.
Murmu
,
U. K.
,
Sahu
,
S.
,
Ghosh
,
A.
, and
Ghosh
,
M.
,
2023
, “
Exploring Possibilities for Fabricating Cu–TiB2 Composite Through Different Powder Metallurgy Routes
,”
J. Inst. Eng. (India): Ser. D
,
104
(
1
), pp.
247
257
.
190.
Wang
,
Y.
, and
Guo
,
C.
,
2018
, “
Frictional Characteristic of Sintered Iron in High Temperature
,”
Ind. Lubr. Tribol.
,
70
(
8
), pp.
1447
1456
.
191.
Xiong
,
X.
,
Chen
,
J.
,
Yao
,
P.
,
Li
,
S.
, and
Huang
,
B.
,
2007
, “
Friction and Wear Behaviors and Mechanisms of Fe and SiO2 in Cu-Based P/M Friction Materials
,”
Wear
,
262
(
9–10
), pp.
1182
1186
.
192.
Messaadi
,
M.
,
Bouvard
,
G.
, and
Kapsa
,
P.
,
2013
, “
Impact-Sliding of Sintered Steel: Effect of Lubrication
,”
Tribol. Online
,
8
(
3
), pp.
203
209
.
193.
Urbaniak
,
W.
,
Majewski
,
T.
,
Wozniak
,
R.
,
Sienkiewicz
,
J.
,
Kubik
,
J.
, and
Petelska
,
A. D.
,
2020
, “
Research on the Influence of the Manufacturing Process Conditions of Iron Sintered With the Addition of Layered Lubricating Materials on Its Selected Properties
,”
Materials
,
13
(
21
), p.
4782
.
194.
Gopinath
,
K.
,
Rayudu
,
G.
, and
Narayanamurthi
,
R.
,
1977
, “
Friction and Wear of Sintered Iron
,”
Wear
,
42
(
2
), pp.
245
250
.
195.
Lim
,
S.
, and
Brunton
,
J.
,
1986
, “
The Unlubricated Wear of Sintered Iron
,”
Wear
,
113
(
3
), pp.
371
382
.
196.
Baroura
,
L.
,
Boukhobza
,
A.
,
Derardja
,
A.
, and
Fedaoui
,
K.
,
2018
, “
Study of Microstructure and Mechanical Properties of Sintered Fe-Cu Alloys
,”
Int. J. Eng. Res. Afr.
,
34
, pp.
5
12
.
197.
Cavdar
,
U.
,
Ünlü
,
B.
, and
Atik
,
E.
,
2014
, “
Effect of the Copper Amount in Iron-Based Powder-Metal Compacts
,”
Mater. Tehnol.
,
48
(
6
), pp.
977
982
.
198.
Svensson
,
L.-E.
,
1974
, “
The Effect of Copper and Nickel Additions to High-Compressibility Sponge Iron Powder on the Sintered Properties of Materials With 0· 3 and 0.60% Carbon
,”
Powder Metall.
,
17
(
34
), pp.
271
287
.
199.
Lan
,
H.
,
Hui
,
Y.
,
Han
,
M.
,
Liu
,
G.
, and
Du
,
J.
, “
The Influence of Copper Content on the Braking Performance of Iron-Based Powder Metallurgy Friction Materials
,”
Proc. J. Phys.: Conf. Ser.
,
1885
(
3
), p.
032068
.
200.
Nadjafi Maryam Negari
,
A.
,
Mamoory
,
R.
,
Simchi
,
A.
, and
Ehsani
,
N.
,
2007
, “
Determination of the Physical and Mechanical Properties of Iron-Based Powder Materials Produced by Microwave Sintering
,”
Powder Metall. Met. Ceram.
,
46
(
9–10
), pp.
423
428
.
201.
Zhang
,
X.
,
Ma
,
F.
,
Ma
,
K.
, and
Li
,
X.
,
2012
, “
Effects of Graphite Content and Temperature on Microstructure and Mechanical Properties of Iron-Based Powder Metallurgy Parts
,”
J. Mater. Sci. Res.
,
1
(
4
), p.
48
.
202.
Mushtaq
,
S.
, and
Wani
,
M. F.
,
2018
, “
Tribological Characterization of Fe-Cu-Sn Alloy With Graphite as Solid Lubricant
,”
Ind. Lubr. Tribol.
,
70
(
2
), pp.
393
400
.
203.
Gopinath
,
K.
,
1981
, “
The Influence of Speed on the Wear of Sintered Iron-Based Materials
,”
Wear
,
71
(
2
), pp.
161
178
.
204.
Annamalai
,
R.
,
Upadhyaya
,
A.
, and
Agrawal
,
D.
,
2013
, “
An Investigation on Microwave Sintering of Fe, Fe–Cu and Fe–Cu–C Alloys
,”
Bull. Mater. Sci.
,
36
(
3
), pp.
447
456
.
205.
Zhang
,
Y.
,
Feng
,
K.
, and
Shui
,
Y.
,
2020
, “
Effect of MoS2 on Iron-Based Friction Material Prepared Directly From Vanadium-Bearing Titanomagnetite Concentrates
,”
Met. Mater. Int.
,
26
(
7
), pp.
1070
1078
.
206.
Mushtaq
,
S.
,
Wani
,
M.
,
Nadeem
,
M.
,
Najar
,
K.
, and
Mursaleen
,
M.
,
2019
, “
A Study on Friction and Wear Characteristics of Fe–Cu–Sn Alloy With MoS2 as Solid Lubricant Under Dry Conditions
,”
Sādhanā
,
44
(
12
), p.
240
.
207.
Dhanasekaran
,
S.
, and
Gnanamoorthy
,
R.
,
2007
, “
Microstructure, Strength and Tribological Behavior of Fe–C–Cu–Ni Sintered Steels Prepared With MoS2 Addition
,”
J. Mater. Sci.
,
42
(
12
), pp.
4659
4666
.
208.
Hammes
,
G.
,
Mucelin
,
K. J.
,
da Costa Gonçalves
,
P.
,
Binder
,
C.
,
Binder
,
R.
,
Janssen
,
R.
,
Klein
,
A. N.
, and
de Mello
,
J. D. B.
,
2017
, “
Effect of Hexagonal Boron Nitride and Graphite on Mechanical and Scuffing Resistance of Self Lubricating Iron Based Composite
,”
Wear
,
376
, pp.
1084
1090
.
209.
Mahathanabodee
,
S.
,
Palathai
,
T.
,
Raadnui
,
S.
,
Tongsri
,
R.
, and
Sombatsompop
,
N.
,
2013
, “
Effects of Hexagonal Boron Nitride and Sintering Temperature on Mechanical and Tribological Properties of SS316L/h-BN Composites
,”
Mater. Des. (1980–2015)
,
46
, pp.
588
597
.
210.
da Costa Gonçalves
,
P.
,
Furlan
,
K. P.
,
Hammes
,
G.
,
Binder
,
C.
,
Binder
,
R.
,
de Mello
,
J. D. B.
, and
Klein
,
A. N.
,
2014
, “
Self-Lubricating Sintered Composites With Hexagonal Boron Nitride and Graphite Mixtures as Solid Lubricants
,”
Adv. Powder Metall. Part Mater.
, pp.
910
917
.
211.
Gülsoy
,
H. Ö.
,
Bilici
,
M. K.
,
Bozkurt
,
Y.
, and
Salman
,
S.
,
2007
, “
Enhancing the Wear Properties of Iron Based Powder Metallurgy Alloys by Boron Additions
,”
Mater. Des.
,
28
(
7
), pp.
2255
2259
.
212.
Talijan
,
N. M.
,
Trifunović
,
D. S.
, and
Trifunović
,
D. D.
,
2000
, “
The Influence of Different Iron Powders on the Friction Properties of Sintered Friction Materials Based on Iron
,”
Mater. Lett.
,
46
(
5
), pp.
255
260
.
213.
Shamsuddin
,
S.
,
Jamaludin
,
S. B.
,
Hussain
,
Z.
, and
Ahmad
,
Z. A.
,
2010
, “
The Effects of Al2O3 Amount on the Microstructure and Properties of Fe-Cr Matrix Composites
,”
Metall. Mater. Trans. A
,
41
(
13
), pp.
3452
3457
.
214.
Gupta
,
P.
,
Kumar
,
D.
,
Parkash
,
O.
, and
Jha
,
A.
,
2014
, “
Sintering and Hardness Behavior of Fe-Al2O3 Metal Matrix Nanocomposites Prepared by Powder Metallurgy
,”
J. Compos.
,
2014
(
1
), p.
145973
.
215.
Gupta
,
P.
,
Kumar
,
D.
,
Parkash
,
O.
, and
Jha
,
A.
,
2014
, “
Effect of Sintering on Wear Characteristics of Fe-Al2O3 Metal Matrix Composites
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
228
(
3
), pp.
362
368
.
216.
Gupta
,
P.
,
Kumar
,
D.
,
Parkash
,
O.
,
Jha
,
A.
, and
Sadasivuni
,
K. K.
,
2018
, “
Dependence of Wear Behavior on Sintering Mechanism for Iron-Alumina Metal Matrix Nanocomposites
,”
Mater. Chem. Phys.
,
220
, pp.
441
448
.
217.
Jha
,
P.
,
Gupta
,
P.
,
Kumar
,
D.
, and
Parkash
,
O.
,
2014
, “
Synthesis and Characterization of Fe–ZrO2 Metal Matrix Composites
,”
J. Compos. Mater.
,
48
(
17
), pp.
2107
2115
.
218.
Han
,
Y.
,
Zhang
,
S.
,
Bai
,
R.
,
Zhou
,
H.
,
Su
,
Z.
,
Wu
,
J.
, and
Wang
,
J.
,
2020
, “
Effect of Nano-Vanadium Nitride on Microstructure and Properties of Sintered Fe-Cu-Based Diamond Composites
,”
Int. J. Refract. Met. Hard Mater.
,
91
, p.
105256
.
219.
De Oliveira
,
L.
,
Paranhos
,
R. D. R.
,
Guimarães
,
R. D. S.
,
Bobrovnitchii
,
G.
, and
Filgueira
,
M.
,
2007
, “
Use of PM Fe–Cu–SiC Composites as Bonding Matrix for Diamond Tools
,”
Powder Metall.
,
50
(
2
), pp.
148
152
.
220.
Yodkaew
,
T.
,
Morakotjinda
,
M.
,
Tosangthum
,
N.
,
Coovattanachai
,
O.
,
Krataitong
,
R.
,
Siriphol
,
P.
,
Vetayanugul
,
B.
,
Chakthin
,
S.
,
Poolthong
,
N.
, and
Tongsri
,
R.
,
2008
, “
Sintered Fe-Al2O3and Fe-SiC Composites
,”
J. Met. Mater. Miner.
,
18
(
1
), pp.
57
61
.
221.
Ghazi
,
A.
,
Chandra
,
K.
, and
Misra
,
P.
,
2011
, “
Development and Characterization of Fe-Based Friction Material Made by Hot Powder Preform Forging for Low Duty Applications
,”
J. Miner. Mater. Charact. Eng.
,
10
(
13
), pp.
1205
1212
.
222.
Chandrasekaran
,
M.
, and
Singh
,
P.
,
1997
, “
Sintered Iron-Based Antifriction Materials With Added β-SiC
,”
Wear
,
206
(
1–2
), pp.
1
7
.
223.
Asif
,
M.
,
Chandra
,
K.
, and
Misra
,
P.
,
2011
, “
Development of Iron Based Brake Friction Material by Hot Powder Preform Forging Technique Used for Medium to Heavy Duty Applications
,”
J. Miner. Mater. Charact. Eng.
,
10
(
03
), pp.
231
244
.
224.
Asif
,
M.
,
Chandra
,
K.
, and
Misra
,
P.
,
2011
, “
Development of Iron Based Brake Friction MMC Used for Military Aircraft Application by a New P/M Route
,”
J. Miner. Mater. Charact. Eng.
,
10
(
8
), pp.
693
705
.
225.
Pagounis
,
E.
, and
Lindroos
,
V.
,
1998
, “
Processing and Properties of Particulate Reinforced Steel Matrix Composites
,”
Mater. Sci. Eng. A
,
246
(
1–2
), pp.
221
234
.
226.
Gómez
,
B.
,
Gordo
,
E.
,
Ruiz-Navas
,
E.
, and
Torralba
,
J.
,
2006
, “
Influence of the Chemical Composition and Particle Size of the Metal Matrix, on TiCN-Reinforced Fe-Based Composites
,”
J. Achiev. Mater. Manuf. Eng.
,
17
(
1–2
), pp.
57
60
.
227.
Gómez
,
B.
,
Jiménez-Suarez
,
A.
, and
Gordo
,
E.
,
2009
, “
Oxidation and Tribological Behaviour of an Fe-Based MMC Reinforced With TiCN Particles
,”
Int. J. Refract. Met. Hard Mater.
,
27
(
2
), pp.
360
366
.
228.
Merie
,
V.
,
Cândea
,
V.
,
Bîrleanu
,
C.
,
Păşcuţă
,
P.
, and
Popa
,
C.
,
2014
, “
The Influence of Titanium Dioxide on the Tribological Characteristics of a Fe-Based Friction Composite Material
,”
J. Compos. Mater.
,
48
(
2
), pp.
235
243
.
229.
Șerdean
,
F. M.
,
Merie
,
V. V.
,
Bîrleanu
,
C. J.
,
Popa
,
C. O.
, and
Pustan
,
M. S.
,
2018
, “
Proceedings of the 4th International Congress of Automotive and Transport
,”
Proceedings of the 4th International Congress of Automotive and Transport Engineering (AMMA 2018) IV
,
Romania
,
Sept. 29
, Springer, pp.
421
428
.
230.
Li
,
B.
,
Liu
,
Y.
,
Li
,
J.
,
Cao
,
H.
, and
He
,
L.
,
2010
, “
Effect of Sintering Process on the Microstructures and Properties of In Situ TiB2–TiC Reinforced Steel Matrix Composites Produced by Spark Plasma Sintering
,”
J. Mater. Process. Technol.
,
210
(
1
), pp.
91
95
.
231.
Anand
,
A.
, and
Sharma
,
S. M.
,
2017
, “
High Temperature Friction and Wear Characteristics of Fe–Cu–C Based Self-Lubricating Material
,”
Trans. Indian Inst. Met.
,
70
(
10
), pp.
2641
2650
.
232.
Sharma
,
S. M.
, and
Anand
,
A.
,
2017
, “
Friction and Wear Behaviour of Fe-Cu-C Based Self Lubricating Material With CaF2 as Solid Lubricant
,”
Ind. Lubr. Tribol.
,
69
(
5
), pp.
715
722
.
233.
Mohan
,
S.
,
Anand
,
A.
,
Raina
,
A.
,
Kumar
,
P.
,
Ul Haq
,
M. I.
,
Graf
,
M.
,
Jayalakshmi
,
S.
, and
Arvind Singh
,
R.
,
2024
, “
High Temperature Tribological Response of Fe-2Cu-0.8 C-CaF2 Self-Lubricating Composites at High Speeds
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
238
(
6
), pp.
687
96
.
234.
Wu
,
Y.
,
Yan
,
Q.
, and
Zhang
,
X.
,
2020
, “
Wear Characteristics of Fe-Based Diamond Composites With Cerium Oxide (CeO2) Reinforcements
,”
Int. J. Refract. Met. Hard Mater.
,
86
, p.
105093
.
235.
Zhang
,
G.
,
Feng
,
K.
,
Li
,
Y.
, and
Yue
,
H.
,
2015
, “
Effects of Sintering Process on Preparing Iron-Based Friction Material Directly From Vanadium-Bearing Titanomagnetite Concentrates
,”
Mater. Des.
,
86
, pp.
616
620
.
236.
Prabhu
,
T. R.
,
Varma
,
V.
, and
Vedantam
,
S.
,
2014
, “
Effect of SiC Volume Fraction and Size on Dry Sliding Wear of Fe/SiC/Graphite Hybrid Composites for High Sliding Speed Applications
,”
Wear
,
309
(
1–2
), pp.
1
10
.
237.
Kannan
,
K. R.
,
Vignesh
,
R. V.
,
Kalyan
,
K. P.
, and
Govindaraju
,
M.
,
2021
, “
Development and Tribological Characterization of Fly Ash Reinforced Iron Based Functionally Gradient Friction Materials
,”
Eng. Rev.
,
41
(
3
), pp.
20
28
.
238.
Nekatibeb
,
F.
,
Raja Annamalai
,
A.
, and
Upadhyaya
,
A.
,
2011
, “
Effect of Copper and Graphite Addition on Sinterability of Iron
,”
Trans. Indian Inst. Met.
,
64
(
1–2
), pp.
81
84
.
239.
Bilbao
,
C.
,
Sainz
,
S.
,
Veiga
,
A.
, and
Castro
,
F.
,
2015
, “
Microstructural Development and Effect of Different Cu/C Contents on Dimensional Changes During Sintering of PM Steels
,”
Powder Metall.
,
58
(
5
), pp.
328
334
.
240.
Bockstiegel
,
G.
,
1962
, “
Dimensional Changes During Sintering of Iron-Copper Mixes and Means to Reduce Them
,”
Metallurgie
,
3
(
4
), p.
67
.
241.
Lenel
,
F.
, and
Pecanha
,
T.
,
1973
, “
Observations on the Sintering of Compacts From a Mixture of Iron and Copper Powders
,”
Powder Metall.
,
16
(
32
), pp.
351
365
.
242.
Han
,
J.
,
Qiu
,
Q.
,
Ning
,
K.
,
Han
,
M.
,
Zhang
,
N.
,
Lang
,
C.
,
Liu
,
Z.
,
Ji
,
Z.
, and
Jia
,
C.
, “
Friction and Wear Mechanism of High Temperature Brake Friction Materials
,”
Proc. IOP Conf. Ser.: Mater. Sci. Eng.
,
730
(
1
), p.
012028
.
243.
Mamedov
,
V.
,
2004
, “
Microstructure and Mechanical Properties of PM Fe–Cu–Sn Alloys Containing Solid Lubricants
,”
Powder Metall.
,
47
(
2
), pp.
173
179
.
244.
Ramesh
,
C.
,
Srinivas
,
C.
, and
Channabasappa
,
B.
,
2009
, “
Abrasive Wear Behaviour of Laser Sintered Iron–SiC Composites
,”
Wear
,
267
(
11
), pp.
1777
1783
.
245.
Yodkaew
,
T.
,
Morakotjinda
,
M.
,
Tosangthum
,
N.
,
Coovattanachai
,
O.
,
Krataitong
,
R.
,
Siriphol
,
P.
,
Vetayanugul
,
B.
,
Chakthin
,
S.
,
Poolthong
,
N.
, and
Tongsri
,
R.
,
2008
, “
Sintered Fe-Al2O3 and Fe-SiC Composites
,”
J. Met. Mater. Miner.
,
18
, p.
1
.
246.
Chakthin
,
S.
,
Morakotjinda
,
M.
,
Yodkaew
,
T.
,
Torsangtum
,
N.
,
Krataithong
,
R.
,
Siriphol
,
P.
,
Coovattanachai
,
O.
,
Vetayanugul
,
B.
,
Thavarungkul
,
N.
, and
Poolthong
,
N.
,
2008
, “
Influence of Carbides on Properties of Sintered Fe-Base Composites
,”
J. Met. Mater. Miner.
,
18
(
2
), pp.
67
70
.
247.
Pagounis
,
E.
,
Lindroos
,
V.
, and
Talvitie
,
M.
,
1996
, “
Influence of Reinforcement Volume Fraction and Size on the Microstructure and Abrasion Wear Resistance of Hot Isostatic Pressed White Iron Matrix Composites
,”
Metall. Mater. Trans. A
,
27
(
12
), pp.
4171
4181
.
248.
Sharma
,
S. M.
, and
Anand
,
A.
,
2018
, “
Effect of Speed on the Tribological Behavior of Fe–Cu–C Based Self Lubricating Composite
,”
Trans. Indian Inst. Met.
,
71
(
4
), pp.
883
891
.
249.
Engberg
,
C. C.
,
1995
,
The Regulation and Manufacture of Brake Pads: The Feasibility of Reformulation to Reduce the Copper Load to the San Francisco Bay
,
Citeseer
,
California
.
250.
Lee
,
L.
,
2013
,
Contribution to Development of Copper-Free Automotive Brake Pads
,
Southern Illinois University at Carbondale
,
Carbondale, IL
.
251.
Ciudin
,
R.
,
Verma
,
P.
,
Gialanella
,
S.
, and
Straffelini
,
G.
,
2014
, “
Wear Debris Materials From Brake Systems: Environmental and Health Issues
,”
WIT Trans. Ecol. Environ.
,
191
, pp.
1423
1434
.
You do not currently have access to this content.