Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Surface irregularities substantially affect the performance of tribological systems. The influence of three-dimensional surface irregularities on the behavior of hole-entry spherical hybrid journal bearings has been investigated. Recently, smart fluids have been employed in several applications to improve their performance. The interactive effect of electro-rheological (ER) fluid and surface irregularities has also been studied. The modified Reynolds equation and restrictor flow equation have been solved using the finite element technique with appropriate boundary conditions. The results show that consideration of surface irregularities on the bearing surface enhances bearing stability. Spherical hybrid journal bearings lubricated by ER fluid increase minimum fluid film thickness and minimize the possibility of metal-to-metal contact. It is found that the combined effect of surface irregularities and ER fluid significantly improved the bearing performance parameters than individual behavior. The bearing designer is anticipated to benefit from the current model.

References

1.
Leung
,
P. S.
,
Craighead
,
I. A.
, and
Wilkinson
,
T. S.
,
1989
, “
An Analysis of the Steady State and Dynamic Characteristics of a Spherical Hydrodynamic Journal Bearing
,”
ASME J. Tribol.
,
111
(
3
), pp.
459
467
.
2.
Goenka
,
P. K.
, and
Booker
,
J. F.
,
1980
, “
Spherical Bearings: Static and Dynamic Analysis Via the Finite Element Method
,”
ASME J. Lubr. Technol.
,
102
(
3
), pp.
308
318
.
3.
Pan
,
C. H. T.
, and
Chiang
,
T.
,
1969
, “
Dynamic Behavior of the Spherical Squeeze-Film Hybrid Bearing
,”
ASME J. Lubr. Technol.
,
91
(
1
), pp.
149
160
.
4.
Sela
,
N. M.
, and
Blech
,
J. J.
,
1991
, “
Performance and Stability of a Hybrid Spherical Gas Gyrobearing
,”
ASME J. Tribol.
,
113
(
3
), pp.
458
463
.
5.
Wang
,
J.
,
Shen
,
J. F.
, and
Fan
,
Y. W.
,
2020
, “
Static Characteristics Analysis of Spherical Hybrid Sliding Bearings
,”
Ind. Lubr. Tribol.
,
72
(
1
), pp.
93
100
.
6.
Bai
,
X.
,
Zhang
,
S.
,
Cai
,
H.
, and
Li
,
A.
,
2015
, “
Characteristics of Spherical Hydrostatic Supporting System for Floated Inertial Platform
,”
Tribol. Int.
,
90
, pp.
287
296
.
7.
Chiang
,
T.
,
Malanoski
,
S. B.
, and
Pan
,
C. H. T.
,
1967
, “
Spherical Squeeze-Film Hybrid Bearing With Small Steady-State Radial Displacement
,”
ASME J. Lubr. Technol.
,
89
(
3
), pp.
254
262
.
8.
Dowson
,
D.
, and
Taylor
,
C. M.
,
1967
, “
Fluid-Inertia Effects in Spherical Hydrostatic Thrust Bearings
,”
ASLE Trans.
,
10
(
3
), pp.
316
324
.
9.
San Andres
,
L.
,
1994
, “
Dynamic Force Response of Spherical Hydrostatic Journal Bearings for Cryogenic Applications
,”
Tribol. Trans.
,
37
(
3
), pp.
463
470
.
10.
Rowe
,
W. B.
, and
Stout
,
K. J.
,
1971
, “
Design Data and a Manufacturing Technique for Spherical Hydrostatic Bearings in Machine Tool Applications
,”
Int. J. Mach. Tool Des. Res.
,
11
(
4
), pp.
293
307
.
11.
O'Donoghue
,
J. P.
,
1971
, “
Design of Fitted Spherical Hydrostatic Bearings
,”
Tribology
,
4
(
3
), pp.
158
163
.
12.
Meyer
,
D.
,
2002
, “
Reynolds Equation for Spherical Bearings
,”
ASME J. Tribol.
,
125
(
1
), pp.
203
206
.
13.
Hannon
,
W. M.
,
Braun
,
M. J.
, and
Hariharan
,
S. I.
,
2004
, “
Generalized Universal Reynolds Equation for Variable Properties Fluid-Film Lubrication and Variable Geometry Self-Acting Bearings
,”
Tribol. Trans.
,
47
(
2
), pp.
171
181
.
14.
Xu
,
C.
, and
Jiang
,
S.
,
2015
, “
Analysis of the Static Characteristics of a Self-Compensation Hydrostatic Spherical Hinge
,”
ASME J. Tribol.
,
137
(
4
), p.
044503
.
15.
Trivedi
,
K.
,
2021
, “
Analyzing Lubrication Properties of Magnetic Lubricant Synthesized in Two Lubricating Oils
,”
Wear
,
477
, p.
203861
.
16.
Simonetto
,
E.
,
Ghiotti
,
A.
,
Brun
,
M.
, and
Bruschi
,
S.
,
2023
, “
A New Machine for Testing Ferrofluids Lubrication Performances by Reciprocating Sliding Wear
,”
Wear
,
516–517
, p.
204601
.
17.
Lingard
,
S.
,
Bullough
,
W. A.
, and
Lee Shek
,
H.
,
1991
, “
Hydrodynamic Pressure Generation With an Electrorheological Fluid
,”
Wear
,
142
(
2
), pp.
373
381
.
18.
Winslow
,
W. M.
,
1949
, “
Induced Fibration of Suspensions
,”
J. Appl. Phys.
,
20
(
12
), pp.
1137
1140
.
19.
Ahn
,
Y. K.
,
Yang
,
B.-S.
, and
Morishita
,
S.
,
2001
, “
Directionally Controllable Squeeze Film Damper Using Electro-Rheological Fluid
,”
ASME J. Vib. Acoust.
,
124
(
1
), pp.
105
109
.
20.
Bouzidane
,
A.
, and
Thomas
,
M.
,
2012
, “Non Linear Transient Response of a Flexible Shaft Controlled by Electro-Rheological Hydrostatic Squeeze Film Dampers,”
Condition Monitoring of Machinery in Non-Stationary Operations
,
T.
Fakhfakh
,
W.
Bartelmus
,
F.
Chaari
,
R.
Zimroz
, and
M.
Haddar
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
33
40
.
21.
Dimarogonas
,
A. D.
, and
Kollias
,
A.
,
1992
, “
Electrorheological Fluid-Controlled “Smart” Journal Bearings
,”
Tribol. Trans.
,
35
(
4
), pp.
611
618
.
22.
Kollias
,
A.
, and
Dimarogonas
,
A.
,
1994
, “
Electrorheological Fluid Flow in Partial Journal Bearings
,”
ASME-Publ.-FED
,
205
, pp.
69
69
.
23.
Wada
,
S.
,
Hayashi
,
H.
, and
Haga
,
K.
,
1973
, “
Behavior of a Bingham Solid in Hydrodynamic Lubrication: Part 1, General Theory
,”
Bull. JSME
,
16
(
92
), pp.
422
431
.
24.
Wada
,
S.
,
Hayashi
,
H.
, and
Haga
,
K.
,
1973
, “
Behavior of a Bingham Solid in Hydrodynamic Lubrication: Part 2, Application to Step Bearing
,”
Bull. JSME
,
16
(
92
), pp.
432
440
.
25.
Nikolakopoulos
,
P. G.
,
and Papadopoulos
,
C. A.
,
1998
, “
Controllable High Speed Journal Bearings, Lubricated With Electro-Rheological Fluids. An Analytical and Experimental Approach
,”
Tribol. Int.
,
31
(
5
), pp.
225
234
.
26.
Jang
,
S.
, and
Tichy
,
J. A.
,
1997
, “
Internal Damper Characteristics of Rotor System With Submerged ER Fluid Journal Bearing
,”
Int. J. Rotating Mach.
,
3
(
1
), pp.
61
71
.
27.
Zhun
,
Z.
, and
Ke-Qin
,
Z.
,
2002
, “
Characteristics of Electrorheological Fluid Flow in Journal Bearings
,”
Chin. Phys. Lett.
,
19
(
2
), pp.
273
275
.
28.
Peng
,
J.
, and
Zhu
,
K.-Q.
,
2006
, “
Effects of Electric Field on Hydrodynamic Characteristics of Finite-Length ER Journal Bearings
,”
Tribol. Int.
,
39
(
6
), pp.
533
540
.
29.
Peng
,
J.
, and
Zhu
,
K.-Q.
,
2005
, “
Hydrodynamic Characteristics of ER Journal Bearings With External Electric Field Imposed on the Contractive Part
,”
J. Intell. Mater. Syst. Struct.
,
16
(
6
), pp.
493
499
.
30.
Sharma
,
S. C.
, and
Khatri
,
C. B.
,
2017
, “
Electro-Rheological Fluid Lubricated Textured Multi-Lobe Hole-Entry Hybrid Journal Bearing System
,”
J. Intell. Mater. Syst. Struct.
,
29
(
8
), pp.
1600
1619
.
31.
Christensen
,
H.
,
1969
, “
Stochastic Models for Hydrodynamic Lubrication of Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
184
(
1
), pp.
1013
1026
.
32.
Guha
,
S. K.
,
1993
, “
Analysis of Dynamic Characteristics of Hydrodynamic Journal Bearings With Isotropic Roughness Effects
,”
Wear
,
167
(
2
), pp.
173
179
.
33.
Guha
,
S. K.
,
2000
, “
Analysis of Steady-State Characteristics of Misaligned Hydrodynamic Journal Bearings With Isotropic Roughness Effect
,”
Tribol. Int.
,
33
(
1
), pp.
1
12
.
34.
Lin
,
J.
,
2002
, “
Effects of Surface Roughness and Rotational Inertia on the Optimal Stiffness of Hydrostatic Thrust Bearings
,”
Int. J. Appl. Mech. Eng.
,
7
(
4
), pp.
1247
1261
.
35.
Mokhtar
,
M. O. A.
,
Aly
,
W. Y.
, and
Shawki
,
G. S. A.
,
1984
, “
Experimental Study of Journal Bearings With Undulating Journal Surface
,”
Tribol. Int.
,
17
(
1
), pp.
19
23
.
36.
Rasheed
,
H. E.
,
1998
, “
Effect of Surface Waviness on the Hydrodynamic Lubrication of a Plain Cylindrical Sliding Element Bearing
,”
Wear
,
223
(
1
), pp.
1
6
.
37.
Ene
,
N. M.
,
Dimofte
,
F.
, and
Keith
,
T. G.
,
2008
, “
A Stability Analysis for a Hydrodynamic Three-Wave Journal Bearing
,”
Tribol. Int.
,
41
(
5
), pp.
434
442
.
38.
Lin
,
T.-R.
,
1996
, “
Hydrodynamic Lubrication of Journal Bearings Including Micropolar Lubricants and Three-Dimensional Irregularities
,”
Wear
,
192
(
1
), pp.
21
28
.
39.
Lin
,
T.-R.
,
1994
, “
Steady State Performance of Finite Hydrodynamic Journal Bearing With Three-Dimensional Irregularities
,”
Wear
,
176
(
1
), pp.
95
102
.
40.
Yacout
,
A. W.
,
Ismaeel
,
A. S.
, and
Kassab
,
S. Z.
,
2007
, “
The Combined Effects of the Centripetal Inertia and the Surface Roughness on the Hydrostatic Thrust Spherical Bearings Performance
,”
Tribol. Int.
,
40
(
3
), pp.
522
532
.
41.
Dowson
,
D.
,
1962
, “
A Generalized Reynolds Equation for Fluid-Film Lubrication
,”
Int. J. Mech. Sci.
,
4
(
2
), pp.
159
170
.
42.
Dapeng
,
C.
,
Yingxue
,
Y.
, and
Dongli
,
Q.
,
2010
, “
Study on the Dynamic Characteristics of a New Type Externally Pressurized Spherical Gas Bearing With Slot–Orifice Double Restrictors
,”
Tribol. Int.
,
43
(
4
), pp.
822
830
.
43.
Rowe
,
W. B.
,
2012
,
Hydrostatic, Aerostatic and Hybrid Bearing Design
,
Elsevier
,
New York
.
44.
Sinhasan
,
R.
, and
Sah
,
P. L.
,
1996
, “
Static and Dynamic Performance Characteristics of an Orifice Compensated Hydrostatic Journal Bearing With Non-Newtonian Lubricants
,”
Tribol. Int.
,
29
(
6
), pp.
515
526
.
45.
Hong
,
G.
,
Xinmin
,
L.
, and
Shaoqi
,
C.
,
2009
, “
Theoretical and Experimental Study on Dynamic Coefficients and Stability for a Hydrostatic/Hydrodynamic Conical Bearing
,”
ASME J. Tribol.
,
131
(
4
), p.
041701
.
You do not currently have access to this content.