Abstract

Running-in quality can be improved by optimizing the running-in parameters (load, speed, and running-in time). The relationship between running-in quality and the fractal dimensions of friction signal and wear surface is analyzed. It shows that the larger the fractal dimension, the better the running-in quality. A multi-objective optimization design of the running-in parameters of the main bearing was carried out using a non-dominated sorting genetic algorithm with an elite strategy. The optimization targets are the large fractal dimension of coefficient of friction (COF), the large fractal dimension of wear surface, and short running-in time. It shows that the selection principles of running-in parameters are different for different stages and priorities. The optimal running-in parameters listed in this paper provide a specific reference to the optimal design of the three-stage running-in of main bearing.

References

1.
Pu
,
W.
,
Wang
,
J.
, and
Zhu
,
D.
,
2016
, “
Friction and Flash Temperature Prediction of Mixed Lubrication in Elliptical Contacts With Arbitrary Velocity Vector
,”
Tribol. Int.
,
99
, pp.
38
46
.
2.
Wei
,
L.
,
Wei
,
H.
,
Duan
,
S.
, and
Yu
,
Z.
,
2015
, “
An EHD-Mixed Lubrication Analysis of Main Bearings for Diesel Engine Based on Coupling Between Flexible Whole Engine Block and Crankshaft
,”
Ind. Lubr. Tribol.
,
67
(
2
), pp.
150
158
.
3.
Jenson
,
A. D.
,
Roy
,
S.
, and
Sundararajan
,
S.
,
2018
, “
The Evolution of Hardness and Tribofilm Growth During Running-In of Case Carburized Steel Under Boundary Lubrication
,”
Tribol. Int.
,
118
, pp.
1
10
.
4.
Cao
,
H. M.
,
Zhou
,
X.
,
Li
,
X. Y.
, and
Lu
,
K.
,
2017
, “
Friction Mechanism in the Running-In Stage of Copper: From Plastic Deformation to Delamination and Oxidation
,”
Tribol. Int.
,
115
, pp.
3
7
.
5.
Horng
,
J. H.
,
Len
,
M. L.
, and
Lee
,
J. S.
,
2002
, “
The Contact Characteristics of Rough Surfaces in Line Contact During Running-In Process
,”
Wear
,
253
(
9–10
), pp.
899
913
.
6.
Sjberg
,
S.
,
Sosa
,
M.
,
Andersson
,
M.
, and
Olofsson
,
U.
,
2016
, “
Analysis of Efficiency of Spur Ground Gears and the Influence of Running-In
,”
Tribol. Int.
,
93
, pp.
172
181
.
7.
Brink
,
A.
,
Lichtenberg
,
K.
, and
Scherge
,
M.
,
2016
, “
The Influence of the Initial Near-Surface Microstructure and Imposed Stress Level on the Running-In Characteristics of Lubricated Steel Contacts
,”
Wear
,
360–361
, pp.
114
120
.
8.
Mallipeddi
,
A. D.
,
Norell
,
A. M.
,
Sosa
,
B. M.
, and
Nyborg
,
A. L.
,
2017
, “
Influence of Running-In on Surface Characteristics of Efficiency Tested Ground Gears
,”
Tribol. Int.
,
115
, pp.
45
58
.
9.
Knauder
,
C.
,
Allmaier
,
H.
,
Salhofer
,
S.
, and
Sams
,
T.
,
2019
, “
The Impact of Running-In on the Friction of an Automotive Gasoline-Engine and in Particular on Its Piston Assembly and Valve-Train
,”
Proc. Inst. Mech. Eng. J.: J. Eng. Tribol.
,
232
(
6
), pp.
749
756
.
10.
Sander
,
D. E.
,
Allmaier
,
H.
,
Priebsch
,
H. H.
,
Witt
,
M.
, and
Skiadas
,
A.
,
2016
, “
Simulation of Journal Bearing Friction in Severe Mixed Lubrication-Validation and Effect of Surface Smoothing Due to Running-In
,”
Tribol. Int.
,
96
, pp.
173
183
.
11.
Zhou
,
Y. K.
,
Zuo
,
X.
, and
Zhu
,
H.
,
2019
, “
A Fractal View on Running-In Process: Taking Steel-on-Steel Tribo-System as an Example
,”
Ind. Lubr. Tribol.
,
71
(
4
), pp.
557
563
.
12.
Zuo
,
X.
,
Zhu
,
H.
,
Zhou
,
Y. K.
, and
Ding
,
C.
,
2016
, “
Monofractal and Multifractal Behavior of Worn Surface in Brass–Steel Tribosystem Under Mixed Lubricated Condition
,”
Tribol. Int.
,
62
, pp.
306
317
.
13.
Wei
,
L.
,
Chang
,
X. Z.
, and
Zhang
,
P. G.
,
2011
, “
Fractal Characterization of Changing of Surface Topography of the End Face of Soft Ring in Running-In Procedure for Mechanical Seal
,”
Chin. Surf. Eng.
,
24
(
5
), pp.
78
82
.
14.
Chao
,
L. I.
,
Cao
,
B.
,
Yang
,
L.
, and
Yuanhang
,
B. I.
,
2018
, “
Study on Fractal Behavior of Friction Coefficient Time Series in the Running-In Process of Friction Pairs
,”
Lubr. Eng.
,
43
(
5
), pp.
13
18
.
15.
Wang
,
Y.
,
Liang
,
G.
,
Liu
,
S.
, and
Cui
,
Y.
,
2021
, “
Coupling Fractal Model for Fretting Wear on Rough Contact Surfaces
,”
ASME J. Tribol.
,
143
(
9
), p.
091701
.
16.
Wang
,
X. Y.
,
Shi
,
L. P.
,
Huang
,
W.
, and
Xiao
,
L.
,
2018
, “
A Multi-objective Optimization Approach on Spiral Grooves for Gas Mechanical Seals
,”
ASME J. Tribol.
,
140
(
4
), p.
041701
.
17.
Lin
,
Q.
,
Yang
,
N.
,
Hong
,
J.
,
Liu
,
L.
, and
Zhang
,
Y.
,
2020
, “
An Optimization Design of Contact Interface Material Stiffness for Improving the Uniformity of the Contact Pressure
,”
ASME J. Tribol.
,
142
(
6
), p.
061502
.
18.
Deb
,
K.
,
Pratap
,
A.
, and
Agarwal
,
S.
,
2002
, “
A Fast and Elitist Multi-objective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
2
(
6
), pp.
182
197
.
19.
Jalali
,
M. R.
,
Afshar
,
A.
, and
Marino
,
M. A.
,
2007
, “
Multi-colony Ant Algorithm for Continuous Multi-reservoir Operation Optimization Problem
,”
Water Resour. Manage.
,
21
(
9
), pp.
1429
1447
.
20.
Haddad
,
O. B.
,
Afshar
,
A.
,
Mari
,
O.
, and
Miguel
,
A.
,
2006
, “
Honey-Bees Mating Optimization (HBMO) Algorithm: A New Heuristic Approach for Water Resources Optimization
,”
Water Resour. Manage.
,
20
(
5
), pp.
661
680
.
21.
Fallah-Mehdipour
,
E.
,
Haddad
,
O. B.
, and
Mariño
,
M. A.
,
2011
, “
MOPSO Algorithm and Its Application in Multipurpose Multireservoir Operations
,”
J. Hydroinformatics
,
13
(
4
), pp.
794
811
.
22.
Mirjalili
,
S.
,
2015
, “
The Ant Lion Optimizer
,”
Adv. Eng. Softw.
,
83
, pp.
80
98
.
23.
He
,
Y.
,
Song
,
B.
, and
Dong
,
H.
,
2017
, “
Multi-objective Optimization Design for the Multi-Bubble Pressure Cabin in BWB Underwater Glider
,”
Int. J. Nav. Arch. Ocean
,
10
(
4
), pp.
439
449
.
24.
Bu
,
J. G.
,
Lan
,
X. D.
,
Zhou
,
M.
, and
Lv
,
K. X.
,
2018
, “
Performance Optimization of Flywheel Motor by Using NSGA-2 and AKMMP
,”
IEEE Trans. Magn.
,
6
, pp.
1
7
.
25.
Moradpour
,
M. A.
,
Hashemi
,
S. H.
, and
Khlili
,
K.
,
2015
, “
Multi-objective Optimization of Welding Parameters in Submerged Arc Welding of API X65 Steel Plates
,”
J. Iron Steel Res. Int.
,
22
(
9
), pp.
870
878
.
26.
Memari
,
A.
,
Rahim
,
A.
,
Rahman
,
A.
,
Hassan
,
A.
, and
Ahmad
,
R.
,
2017
, “
A Tuned NSGA-II to Optimize the Total Cost and Service Level for a Just-In-Time Distribution Network
,”
Neural Comput. Appl.
,
28
(
11
), pp.
1
15
.
27.
Niakan
,
F.
,
Baboli
,
A.
, and
Moyaux
,
T.
,
2016
, “
A Bi-objective Model in Sustainable Dynamic Cell Formation Problem With Skill-Based Worker Assignment
,”
J. Manuf. Syst.
,
38
, pp.
46
62
.
28.
Zhou
,
Y. K.
,
Tang
,
X.
, and
Zuo
,
X.
,
2021
, “
Prediction Model of Fractal Dimensions in Steady State Through a Multi-stage Running in of Sn11Sb6Cu and AISI 1045 Steel
,”
Wear
,
477
, p.
203770
.
29.
Ji
,
C. C.
,
Zhu
,
H.
,
Jiang
,
W.
, and
Lu
,
B. B.
,
2010
, “
Running-In Test and Fractal Methodology for Worn Surface Topography Characterization
,”
Chin. J. Mech. Eng.
,
23
(
5
), pp.
600
605
.
30.
Zuo
,
X.
,
Tang
,
X.
, and
Zhou
,
Y. K.
,
2020
, “
Influence of Sampling Length on Estimated Fractal Dimension of Surface Profile
,”
Chaos Solit. Fractals
,
135
, p.
109755
.
31.
Wang
,
X.
,
Gu
,
X.
,
Liu
,
Z.
,
Wang
,
Q.
,
Xu
,
X.
, and
Zheng
,
M. G.
,
2018
, “
Production Process Optimization of Metal Mines Considering Economic Benefit and Resource Efficiency Using an NSGA-II Model
,”
Processes
,
6
(
11
), pp.
1
22
.
32.
Li
,
X. Q.
,
Dong
,
H. Y.
,
Li
,
H. W.
,
Li
,
M. X.
, and
Sun
,
Z. Q.
,
2019
, “
Optimization Control of Front-End Speed Regulation (FESR) Wind Turbine Based on Improved NSGA-II
,”
IEEE Access
,
7
, pp.
45583
45593
.
You do not currently have access to this content.