Abstract

The recently introduced four-station friction RandomPOD device was utilized in multidirectional, circular translation pin-on-disk (CTPOD) tests. The effect of sliding velocity on friction with orthopaedic bearing materials was studied. The tests included UHMWPE and VEXLPE pins against polished CoCr disks in serum lubrication at 37 °C. In the constant velocity tests, the sliding velocities used were from 5 to 50 mm/s at intervals of 5 mm/s. The test length with each velocity was 24 h. In the constant acceleration tests, the velocity steadily increased from 0 to 50 mm/s in 24 h. In all tests, the sample size was 4. No strong effect of velocity on friction was observed. This indicated a boundary lubrication mechanism. With sliding velocities above 10 mm/s, VEXLPE showed significantly lower friction than UHMWPE. The finding was in agreement with earlier dynamic RandomPOD tests. Clinically, the use of VEXLPE may result in lower frictional heating.

References

1.
Bergmann
,
G.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Verdonschot
,
N.
, and
van Lenthe
,
G. H.
,
2001
, “
Frictional Heating of Total Hip Implants. Part 1. Measurements in Patients
,”
J. Biomech.
,
34
(
4
), pp.
421
428
.
2.
Liao
,
Y.-S.
,
McKellop
,
H.
,
Lu
,
Z.
,
Campbell
,
P.
, and
Benya
,
P.
,
2003
, “
The Effect of Frictional Heating and Forced Cooling on the Serum Lubricant and Wear of UHMW Polyethylene Cups Against Cobalt-Chromium and Zirconia Balls
,”
Biomaterials
,
24
(
18
), pp.
3047
3059
.
3.
Imado
,
K.
,
Miura
,
A.
,
Nagatoshi
,
M.
,
Kido
,
Y.
,
Miyagawa
,
H.
, and
Higaki
,
H.
,
2004
, “
A Study of Contact Temperature Due to Frictional Heating of UHMWPE
,”
Tribol. Lett.
,
16
(
4
), pp.
265
273
.
4.
Lewicki
,
K. A.
, and
Van Citters
,
D. W.
,
2016
, “
Experimental and Computational Thermal Modeling of In Vitro Pin-on-Disk Tests of Ultra High Molecular Weight Polyethylene
,”
ASME J. Tribol.
,
138
(
4
), p.
041602
.
5.
Janssen
,
D.
,
Zwartele
,
R. E.
,
Doets
,
H. C.
, and
Verdonschot
,
N.
,
2010
, “
Computational Assessment of Press-Fit Acetabular Implant Fixation: The Effect of Implant Design, Interference Fit, Bone Quality, and Frictional Properties
,”
Proc. Inst. Mech. Eng. H
,
224
(
1
), pp.
67
75
.
6.
Wang
,
A.
,
Essner
,
A.
, and
Klein
,
R.
,
2001
, “
Effect of Contact Stress on Friction and Wear of Ultra-High Molecular Weight Polyethylene in Total Hip Replacement
,”
Proc. Inst. Mech. Eng. H
,
215
(
2
), pp.
133
139
.
7.
Saikko
,
V.
,
2006
, “
Effect of Contact Pressure on Wear and Friction of Ultra-High Molecular Weight Polyethylene in Multi-directional Sliding
,”
Proc. Inst. Mech. Eng. H
,
220
(
7
), pp.
723
731
.
8.
Saikko
,
V.
,
2017
, “
Effect of Contact Area on the Wear and Friction of UHMWPE in Circular Translation Pin-on-Disk Tests
,”
ASME J. Tribol.
,
139
(
6
), p.
061606
.
9.
Saikko
,
V.
,
2017
, “
Effect of Contact Area on the Wear of Ultrahigh Molecular Weight Polyethylene in Noncyclic Pin-on-Disk Tests
,”
Tribol. Int.
,
114
, pp.
84
87
.
10.
Saikko
,
V.
,
2020
, “
Effect of Type of Contact, Counterface Surface Roughness, and Contact Area on the Wear and Friction of Extensively Cross-Linked, Vitamin E Stabilized UHMWPE
,”
J. Biomed. Mater. Res. B
,
108
(
5
), pp.
1985
1992
.
11.
Fisher
,
J.
,
Dowson
,
D.
,
Hamzah
,
H.
, and
Lee
,
H. L.
,
1994
, “
The Effect of Sliding Velocity on the Friction and Wear of UHMWPE for Use in Total Artificial Joints
,”
Wear
,
175
(
1–2
), pp.
210
225
.
12.
Chen
,
X. M.
,
Jin
,
Z. M.
, and
Fisher
,
J.
,
2008
, “
Effect of Albumin Adsorption on Friction Between Artificial Joint Materials
,”
Proc. Inst. Mech. Eng. J.
,
222
(
3
), pp.
513
521
.
13.
Borjali
,
A.
,
Monson
,
K.
, and
Raeymaekers
,
B.
,
2018
, “
Friction Between a Polyethylene Pin and a Microtextured CoCrMo Disc, and Its Correlation to Polyethylene Wear, As a Function of Sliding Velocity and Contact Pressure, in the Context of Metal-on-Polyethylene Prosthetic Hip Implants
,”
Tribol. Int.
,
127
, pp.
568
574
.
14.
McKellop
,
H. A.
,
Campbell
,
P.
,
Park
,
S. H.
,
Schmalzried
,
T. P.
,
Grigoris
,
P.
,
Amstutz
,
H. C.
, and
Sarmiento
,
A.
,
1995
, “
The Origin of Submicron Polyethylene Wear Debris in Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
311
, pp.
3
20
.
15.
Jasty
,
M.
,
Goetz
,
D. D.
,
Bragdon
,
C. R.
,
Lee
,
K. R.
,
Hanson
,
A. E.
,
Elder
,
J. R.
, and
Harris
,
W. H.
,
1997
, “
Wear of Polyethylene Acetabular Components in Total Hip Arthroplasty. An Analysis of One Hundred and Twenty-Eight Components Retrieved at Autopsy or Revision Operations
,”
J. Bone Jt. Surg.
,
79
(
3
), pp.
349
358
.
16.
Edidin
,
A. A.
,
Rimnac
,
C. M.
,
Goldberg
,
V. M.
, and
Kurtz
,
S. M.
,
2001
, “
Mechanical Behavior, Wear Surface Morphology, and Clinical Performance of UHMWPE Acetabular Components After 10 Years of Implantation
,”
Wear
,
250
(
1–2
), pp.
152
158
.
17.
Saikko
,
V.
,
1998
, “
A Multidirectional Motion Pin-on-Disk Wear Test Method for Prosthetic Joint Materials
,”
J. Biomed. Mater. Res.
,
41
(
1
), pp.
58
64
.
18.
Saikko
,
V.
,
2005
, “
A Hip Wear Simulator With 100 Test Stations
,”
Proc. Inst. Mech. Eng. H
,
219
(
5
), pp.
309
318
.
19.
Hall
,
R. M.
, and
Unsworth
,
A.
,
1997
, “
Friction in Hip Prostheses
,”
Biomaterials
,
18
(
15
), pp.
1017
1726
.
20.
Bracco
,
P.
, and
Oral
,
E.
,
2011
, “
Vitamin E-Stabilized UHMWPE for Total Joint Implants: A Review
,”
Clin. Orthop. Relat. Res.
,
469
(
8
), pp.
2286
2293
.
21.
Saikko
,
V.
,
Morad
,
O.
, and
Viitala
,
R.
,
2021
, “
Friction RandomPOD—A New Method for Friction Measurement in Noncyclic, Multidirectional, Dynamic Pin-on-Disk Tests for Orthopaedic Bearing Materials
,”
J. Biomech.
,
118
, p.
110273
.
22.
Saikko
,
V.
,
Morad
,
O.
, and
Viitala
,
R.
,
2022
, “
Effect of Temperature on UHMWPE and VEXLPE Friction and Wear Against CoCr in Noncyclic Tests
,”
Wear
,
490–491
, p.
204190
.
23.
Besier
,
T. F.
,
Sturnieks
,
D. L.
,
Alderson
,
J. A.
, and
Lloyd
,
D. G.
,
2003
, “
Repeatability of Gait Data Using a Functional Hip Joint Centre and a Mean Helical Knee Axis
,”
J. Biomech.
,
36
(
8
), pp.
1159
1168
.
24.
Saikko
,
V.
,
1992
, “
A Simulator Study of Friction in Total Replacement Hip Joints
,”
Proc. Inst. Mech. Eng. H
,
206
(
4
), pp.
201
211
.
25.
Haider
,
H.
,
Weisenburger
,
J. N.
, and
Garvin
,
K. L.
,
2016
, “
Simultaneous Measurement of Friction and Wear in Hip Simulators
,”
Proc. Inst. Mech. Eng. H
,
230
(
5
), pp.
373
388
.
26.
Saikko
,
V.
,
Morad
,
O.
, and
Viitala
,
R.
,
2022
, “
Modification of a Simplified Hip Joint Simulator Into an ISO 14242-1 Compliant Design and a Comparison of Wear Test Results
,”
ASME J. Tribol.
,
144
(
5
), p.
051703
.
27.
Allen
,
Q.
, and
Raeymaekers
,
B.
,
2021
, “
Surface Texturing of Prosthetic Hip Implant Bearing Surfaces: A Review
,”
ASME J. Tribol.
,
143
(
4
), p.
040801
.
28.
Nečas
,
D.
,
Sawae
,
Y.
,
Fujisawa
,
T.
,
Nakashima
,
K.
,
Morita
,
T.
,
Yamaguchi
,
T.
,
Vrbka
,
M.
,
Křupka
,
I.
, and
Hartl
,
M.
,
2017
, “
The Influence of Proteins and Speed on Friction and Adsorption of Metal/UHMWPE Contact Pair
,”
Biotribology
,
11
, pp.
51
59
.
You do not currently have access to this content.