Abstract

The cylinder block/valve plate interface is one of the major power loss sources and main failure points in axial piston pumps and motors. Surface micro-texture has been proven to be an effective approach to reduce friction and wear in many tribological applications. In the present paper, the effect of micro-texture on the tribological and lubricating performance of the important cylinder block/valve plate interface is studied experimentally and numerically. The experimental investigation was conducted on a disk-on-disk tribometer with similar geometry, operating speed, material, and working fluid to the cylinder block/valve plate interface in the axial piston pump. The tribological test results confirmed the chevron micro-texture's potential to reduce frictional loss in such lubricating interface. Furthermore, a novel numerical method coupling the dynamic loading, squeeze motion, analytical pressure deformation, mixed friction, and cavitation was proposed to study the lubricating performance of micro-textured valve plate/cylinder block interface. This model was then validated comparing to the tribometer experimental results and was used to study the effect of depths, widths, and distances of chevron micro-textures on the lubrication performance of cylinder block/valve plate interface. The results found that the depth of the chevron micro-textures affected whether the cavitation occurred inside the micro-texture, the width of the chevron micro-texture affected the size of the cavitation area that occurred in the micro-textures, and the chevron micro-texture distance affected the size of the convergence zone where positive pressure generated.

References

1.
Hasko
,
D.
,
Shang
,
L.
,
Noppe
,
E.
, and
Lefrançois
,
E.
,
2019
, “
Virtual Assessment and Experimental Validation of Power Loss Contributions in Swash Plate Type Axial Piston Pumps
,”
Energies
,
12
(
16
), p.
3096
.
2.
Du
,
J.
,
Wang
,
S.
, and
Zhang
,
H.
,
2013
, “
Layered Clustering Multi-Fault Diagnosis for Hydraulic Piston Pump
,”
Mech. Syst. Signal. Process.
,
36
(
2
), pp.
487
504
.
3.
Chacon
,
R.
, and
Ivantysynova
,
M.
,
2019
, “
Virtual Prototyping of Axial Piston Machines: Numerical Method and Experimental Validation
,”
Energies
,
12
(
9
), p.
1674
.
4.
Chacon
,
R.
, and
Ivantysynova
,
M.
,
2016
, “
An Investigation of the Impact of the Elastic Deformation of the End Case/Housing on Axial Piston Machines Cylinder Block/Valve Plate Lubricating Interface
,”
10th International Fluid Power Conference
,
Dresden, Germany
,
Mar. 8–10
, pp.
283
294
.
5.
Ivantysynova
,
M.
, and
Baker
,
J.
,
2009
, “
Power Loss in the Lubricating Gap Between Cylinder Block and Valve Plate of Swashplate Type Axial Piston Machines
,”
Int. J. Fluid Power
,
10
(
2
), pp.
29
43
.
6.
Zhang
,
J.
,
Chen
,
Y.
,
Xu
,
B.
,
Chao
,
Q.
,
Zhu
,
Y.
, and
Huang
,
X.
,
2018
, “
Effect of Surface Texture on Wear Reduction of the Tilting Cylinder and the Valve Plate for a High-Speed Electro-Hydrostatic Actuator Pump
,”
Wear
,
414
, pp.
68
78
.
7.
Wang
,
Z.
,
Gu
,
L.
, and
Li
,
L.
,
2013
, “
Experimental Studies on the Overall Efficiency Performance of Axial Piston Motor With a Laser Surface Textured Valve Plate
,”
Proc. Inst. Mech. Eng. B: J. Eng.
,
227
(
7
), pp.
1049
1056
.
8.
Wang
,
Z.
,
Hu
,
S.
,
Zhang
,
H.
,
Ji
,
H.
,
Yang
,
J.
, and
Liang
,
W.
,
2018
, “
Effect of Surface Texturing Parameters on the Lubrication Characteristics of an Axial Piston Pump Valve Plate
,”
Lubricants
,
6
(
2
), p.
49
.
9.
Shin
,
J. H.
, and
Kim
,
K. W.
,
2014
, “
Effect of Surface Non-Flatness on the Lubrication Characteristics in the Valve Part of a Swash-Plate Type Axial Piston Pump
,”
Meccanica
,
49
(
5
), pp.
1275
1295
.
10.
Chen
,
Y.
,
Zhang
,
J.
,
Xu
,
B.
,
Chao
,
Q.
, and
Liu
,
G.
,
2019
, “
Multi-Objective Optimization of Micron-Scale Surface Textures for the Cylinder/Valve Plate Interface in Axial Piston Pumps
,”
Tribol. Int.
,
138
, pp.
316
329
.
11.
Shen
,
C.
, and
Khonsari
,
M. M.
,
2013
, “
Effect of Dimple’s Internal Structure on Hydrodynamic Lubrication
,”
Tribol. Lett.
,
52
(
3
), pp.
415
430
.
12.
Buscaglia
,
G. C.
,
Talibi
,
M. E. A.
, and
Jai
,
M.
,
2015
, “
Mass-Conserving Cavitation Model for Dynamical Lubrication Problems. Part I: Mathematical Analysis
,”
Math. Comput. Simul.
,
118
, pp.
130
145
.
13.
Ausas
,
R.
,
Ragot
,
P.
,
Leiva
,
J.
,
Jai
,
M.
,
Bayada
,
G.
, and
Buscaglia
,
G. C.
,
2007
, “
The Impact of the Cavitation Model in the Analysis of Microtextured Lubricated Journal Bearings
,”
ASME J. Tribol.
,
129
(
4
), pp.
868
875
.
14.
Xue
,
B.
,
Wei
,
C.
, and
Hu
,
J. B.
,
2017
, “
Study of Separation Characteristics of Micro-Groove Rotary Seal Considering Different Cavitation Boundary Conditions
,”
Tribol. Lett.
,
65
(
1
), pp.
1
16
.
15.
Zhao
,
Y.
,
Wei
,
C.
,
Yuan
,
S.
, and
Hu
,
J.
,
2016
, “
Theoretical and Experimental Study of Cavitation Effects on the Dynamic Characteristic of Spiral-Groove Rotary Seals (SGRSs)
,”
Tribol. Lett.
,
64
(
3
), pp.
1
18
.
16.
Ransegnola
,
T.
,
2020
, “
A Strongly Coupled Simulation Model of Positive Displacement Machines for Design and Optimization
,”
Ph.D. dissertation
,
Purdue University
,
West Lafayette, IN
.
17.
Cho
,
I. S.
,
2015
, “
A Study on the Optimum Design for the Valve Plate of a Swash Plate-Type Oil Hydraulic Piston Pump
,”
J. Mech. Sci. Technol.
,
29
(
6
), pp.
2409
2413
.
18.
Zhu
,
Y.
,
Chen
,
X.
,
Zou
,
J.
, and
Yang
,
H.
,
2015
, “
A Study on the Influence of Surface Topography on the Low-Speed Tribological Performance of Port Plates in Axial Piston Pumps
,”
Wear
,
338
, pp.
406
417
.
19.
Chen
,
L.
,
Liu
,
Z.
, and
Song
,
W.
,
2020
, “
Process-Surface Morphology-Tribological Property Relationships for H62 Brass Employing Various Manufacturing Approaches
,”
Tribol. Int.
,
148
, p.
106320
.
20.
Ransegnola
,
T.
,
Sadeghi
,
F.
, and
Vacca
,
A.
,
2021
, “
An Efficient Cavitation Model for Compressible Fluid Film Bearings
,”
Tribol. Trans.
,
64
(
3
), pp.
434
453
.
21.
Wang
,
X.
,
Kato
,
K.
,
Adachi
,
K.
, and
Aizawa
,
K.
,
2003
, “
Loads Carrying Capacity Map for the Surface Texture Design of SiC Thrust Bearing Sliding in Water
,”
Tribol. Int.
,
36
(
3
), pp.
189
197
.
22.
Scaraggi
,
M.
,
Mezzapesa
,
F. P.
,
Carbone
,
G.
,
Ancona
,
A.
,
Sorgente
,
D.
, and
Lugarà
,
P. M.
,
2014
, “
Minimize Friction of Lubricated Laser-Microtextured-Surfaces by Tuning Microholes Depth
,”
Tribol. Int.
,
75
, pp.
123
127
.
23.
Scaraggi
,
M.
,
Mezzapesa
,
F. P.
,
Carbone
,
G.
,
Ancona
,
A.
, and
Tricarico
,
L.
,
2013
, “
Friction Properties of Lubricated Laser-Microtextured-Surfaces: An Experimental Study From Boundary- to Hydrodynamic-Lubrication
,”
Tribol. Lett.
,
49
(
1
), pp.
117
125
.
24.
Caramia
,
G.
,
Carbone
,
G.
, and
De Palma
,
P.
,
2015
, “
Hydrodynamic Lubrication of Micro-Textured Surfaces: Two Dimensional CFD-Analysis
,”
Tribol. Int.
,
88
, pp.
162
169
.
25.
Hamilton
,
D. B.
,
Walowit
,
J. A.
, and
Allen
,
C. M.
,
1966
, “
A Theory of Lubrication by Microirregularities
,”
ASME J. Fluids Eng.
,
88
(
1
), pp.
177
185
.
26.
Etsion
,
I.
,
2005
, “
State of the Art in Laser Surface Texturing
,”
J. Trib.
,
127
(
1
), pp.
248
253
.
27.
Ronen
,
A.
,
Etsion
,
I.
, and
Kligerman
,
Y.
,
2001
, “
Friction-Reducing Surface-Texturing in Reciprocating Automotive Components
,”
Tribol. Trans.
,
44
(
3
), pp.
359
366
.
28.
Mao
,
Y.
,
Zeng
,
L.
, and
Lu
,
Y.
,
2016
, “
Modeling and Optimization of Cavitation on a Textured Cylinder Surface Coupled With the Wedge Effect
,”
Tribol. Int.
,
104
, pp.
212
224
.
29.
Wang
,
J.
,
Yan
,
Z.
,
Fang
,
X.
,
Shen
,
Z.
, and
Pan
,
X.
,
2020
, “
Observation and Experimental Investigation on Cavitation Effect of Friction Pair Surface Texture
,”
Lubr. Sci.
,
32
(
8
), pp.
404
414
.
30.
Jiang
,
S.
,
Liu
,
P.
, and
Lin
,
X.
,
2022
, “
Study on Static Characteristics of Water-Lubricated Textured Spiral Groove Thrust Bearing Using Laminar Cavitating Flow Lubrication Model
,”
ASME J. Tribol.
,
144
(
4
), p.
041803
.
31.
Krella
,
A. K.
,
2017
, “
Degradation of AlMg2 Aluminium Alloy Caused by Cavitation—An Effect of Cavitation Intensity
,”
Mater. Charact.
,
130
, pp.
219
229
.
32.
Wang
,
Y.
,
Lebon
,
B.
,
Tzanakis
,
I.
,
Zhao
,
Y.
,
Wang
,
K.
,
Stella
,
J.
,
Poirier
,
T.
,
Darut
,
G.
,
Liao
,
H.
, and
Planche
,
M.-P.
,
2019
, “
Experimental and Numerical Investigation of Cavitation-Induced Erosion in Thermal Sprayed Single Splats
,”
Ultrason. Sonochem.
,
52
, pp.
336
343
.
33.
Xing
,
Y.
,
Li
,
X.
,
Hu
,
R.
,
Long
,
X.
,
Wu
,
Z.
, and
Liu
,
L.
,
2021
, “
Numerical Analyses of Rectangular Micro-Textures in Hydrodynamic Lubrication Regime for Sliding Contacts
,”
Meccanica
,
56
(
2
), pp.
365
382
.
You do not currently have access to this content.