Abstract

Residual stress is easily generated in laser additive manufacturing (LAM) alloys due to high-temperature gradient during preparing, which increases the failure risk of materials. A LAM Hastelloy C22 was prepared by rotating strategy in this study, and the wear mechanism induced by heat treatment was investigated. The microstructural results showed that the columnar structure with the size of 1 ∼ 4 μm and the cellular structures with the size of 0.3 ∼ 1 μm were observed in LAM Hastelloy C22. The samples consist of γ-Ni solid solution. Cr23C6 and the increase of MoSi2 content were found as the heating temperature increased. The mechanical results presented that compared with the as-received LAM Hastelloy C22, the residual stress and wear-rate of the samples heat treated at 600 °C, 750 °C, and 900 °C were reduced by 14%, 49%, 63% and 39.9%, 68.9%, 92.3%, respectively. The wear mechanism showed that heat treatment enhanced the wear resistance of LAM Hastelloy C22 by the integrated oxide layer and supporting effect of MoSi2 and Cr23C6. This research indicated that the microstructural evolution that enhanced the wear resistance of LAM Hastelloy C22 was predominant rather than the reduced effect from relieving residual stress after heat treatment.

References

1.
Al-Mamun
,
N. S.
,
Haider
,
W.
, and
Shabib
,
I.
,
2020
, “
Corrosion Resistance of Additively Manufactured 316L Stainless Steel in Chloridethiosulfate Environment
,”
Electrochim. Acta
,
362
, pp.
1
17
.
2.
Lee
,
J. H.
,
Lee
,
C. M.
, and
Kim
,
D. H.
,
2022
, “
Repair of Damaged Parts Using Wire Arc Additive Manufacturing In Machine Tools Remanufacturing
,”
J. Mater. Res. Technol
,
16
, pp.
13
24
.
3.
Molina
,
C.
,
Araujo
,
A.
,
Bell
,
K.
,
Mendez
,
P. F.
, and
Chapetti
,
M.
,
2020
, “
Fatigue Life of Laser Additive Manufacturing Repaired Steel Component
,”
Eng. Fract. Mech.
,
241
, p.
107417
.
4.
Ahmed
,
A.
,
Lew
,
M. T.
,
Diwakar
,
P.
,
Kumar
,
A. S.
, and
Rahman
,
M.
,
2019
, “
A Novel Approach in High Performance Deep Hole Drilling of Inconel 718
,”
Precis. Eng.
,
56
, pp.
432
437
.
5.
Ji
,
X.
,
Duan
,
H.
,
Zhang
,
H.
, and
Ma
,
J.
,
2015
, “
Slurry Erosion Resistance of Laser Clad NiCoCrFeAl3 High-Entropy Alloy Coatings
,”
Tribol. Trans.
,
58
(
6
), pp.
1119
1123
.
6.
Herzog
,
D.
,
Seyda
,
V.
,
Wycisk
,
E.
, and
Emmelmann
,
C.
,
2017
, “
Additive Manufacturing of Metals
,”
Acta Mater.
,
117
, pp.
371
392
.
7.
Kim
,
T. H.
,
Bae
,
K. C.
,
Jeon
,
J. B.
,
Yong
,
H. P.
, and
Lee
,
W.
,
2020
, “
Building-Direction Dependence of Wear Resistance of Selective Laser Melted AISI 316L Stainless Steel Under Quasi-Stationary Condition
,”
Tribol. Lett.
,
68
(
3
), pp.
1
12
.
8.
Kong
,
D.
,
Dong
,
C.
,
Wei
,
S.
,
Ni
,
X.
, and
Li
,
X.
,
2021
, “
About Metastable Cellular Structure in Additively Manufactured Austenitic Stainless Steels
,”
Addit. Manuf.
,
38
, p.
101804
.
9.
Wu
,
Y.
,
Zhang
,
S.
,
Cheng
,
X.
, and
Wang
,
H.
,
2019
, “
Investigation on Solid-State Phase Transformation in a Ti-47Al-2Cr-2 V Alloy Due to Thermal Cycling During Laser Additive Manufacturing Process
,”
J. Alloys Compd.
,
799
, pp.
325
333
.
10.
Fang
,
Z. C.
,
Wu
,
Z. L.
,
Huang
,
C. G.
, and
Wu
,
C. W.
,
2020
, “
Review on Residual Stress in Selective Laser Melting Additive Manufacturing of Alloy Parts
,”
Opt. Laser Technol.
,
129
, p.
106283
.
11.
Nadammal
,
N.
,
Mishurova
,
T.
,
Fritsch
,
T.
,
Muoz
,
I. S.
, and
Bruno
,
G.
,
2020
, “
Critical Role of Scan Strategies on the Development of Microstructure, Texture, and Residual Stresses During Laser Powder bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
38
(
5
), p.
101792
.
12.
Sun
,
L.
,
Ren
,
X.
,
He
,
J.
, and
Zhang
,
Z.
,
2021
, “
Numerical Investigation of a Novel Pattern for Reducing Residual Stress in Metal Additive Manufacturing
,”
J. Mater. Sci. Technol.
,
20
(
8
), p.
12
.
13.
Liu
,
F.
,
Lin
,
X.
,
Yang
,
G.
,
Song
,
M.
,
Chen
,
J.
, and
Huang
,
W.
,
2011
, “
Microstructure and Residual Stress of Laser Rapid Formed Inconel 718 Nickel-Base Superalloy
,”
Opt. Laser Technol.
,
43
(
1
), pp.
208
213
.
14.
Pilloz
,
M.
,
Pelletier
,
J. M.
, and
Vannes
,
A. B.
,
1992
, “
Residual Stresses Induced by Laser Coatings: Phenomenological Analysis and Predictions
,”
J. Mater. Sci.
,
27
(
5
), pp.
1240
1244
.
15.
Zhao
,
Z. X.
,
Mu
,
G. H.
, and
Sun
,
B. C.
,
1992
, “
The Surface Treatment of Spheroidal Graphite Cast Iron by Laser and the Residual Stress State of Melted Layer
,”
Hot Work. Tech.
,
4
, pp.
32
34
.
16.
Jinoop
,
A. N.
,
Denny
,
J.
,
Paul
,
C. P.
,
Ganesh Kumar
,
J.
, and
Bindra
,
K. S.
,
2019
, “
Effect of Post Heat-Treatment on the Microstructure and Mechanical Properties of Hastelloy-X Structures Manufactured by Laser Based Directed Energy Deposition
,”
J. Alloys Compd.
,
797
, pp.
399
412
.
17.
Em
,
A.
,
Sb
,
A.
,
Mb
,
B.
, and
Mg
,
A.
,
2020
, “
Surface Post-Treatments for Metal Additive Manufacturing: Progress, Challenges, and Opportunities
,”
Addit. Manuf.
,
37
, pp.
1
34
.
18.
Zhang
,
F.
,
Levine
,
L. E.
,
Allen
,
A. J.
,
Stoudt
,
M. R.
,
Lindwall
,
G.
,
Lass
,
E. A.
,
Williams
,
M. E.
,
Idell
,
Y.
, and
Campbell
,
C. E.
,
2018
, “
Effect of Heat Treatment on the Microstructural Evolution of a Nickel-Based Superalloy Additive-Manufactured by Powder Bed Fusion Laser Sintering
,”
Acta Mater.
,
152
, pp.
200
214
.
19.
Liu
,
H.
,
Zhang
,
J.
, and
Wu
,
Q.
,
2019
, “
Research on the Influence of Heat Treatment on the Residual Stress of SLM Processed inconel718 Parts
,”
J. Chin.Soc. Theor. Appl. Mech.
,
5
, pp.
1006
1017
.
20.
Tomus
,
D.
,
Tian
,
Y.
,
Rometsch
,
P. A.
,
Heilmaier
,
M.
, and
Wu
,
X.
,
2016
, “
Influence of Post Heat Treatments on Anisotropy of Mechanical Behaviour and Microstructure of Hastelloy-X Parts Produced by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
667
, pp.
42
53
.
21.
Li
,
H.
,
Ramezani
,
M.
,
Li
,
M.
,
Ma
,
C.
, and
Wang
,
J.
,
2018
, “
Effect of Process Parameters on Tribological Performance of 316L Stainless Steel Parts Fabricated by Selective Laser Melting
,”
Manuf. Lett.
,
16
, pp.
36
39
.
22.
Chen
,
C.
,
Meiping
,
W.
, and
Sihai
,
X.
,
2020
, “
Effect of Heat Treatment on Properties of Laser Cladding Cobalt-Based Coating on 42CrMo Steel Surface
,”
Chin. J. Lasers
,
47
(
6
), p.
0602011
.
23.
Idell
,
Y.
,
Levine
,
L. E.
,
Allen
,
A. J.
,
Zhang
,
F.
,
Campbell
,
C. E.
,
Olson
,
G. B.
,
Gong
,
J.
,
Snyder
,
D. R.
, and
Deutchman
,
H. Z.
,
2016
, “
Unexpected δ-Phase Formation in Additive-Manufactured Ni-Based Superalloy
,”
JOM
,
68
(
3
), pp.
950
959
.
24.
Liu
,
H.
,
Liu
,
J.
,
Li
,
X.
,
Chen
,
P. J.
,
Yang
,
H. F.
, and
Hao
,
J. B.
,
2020
, “
Effect of Heat Treatment on Phase Stability and Wear Behavior of Laser Clad AlCoCrFeNiTi 0.8 High-Entropy Alloy Coatings
,”
Surf. Coat. Technol.
,
392
, p.
125758
.
25.
Wang
,
G. Q.
,
Li
,
H. B.
,
Chen
,
M. S.
,
Lin
,
Y. C.
,
Zeng
,
W.-D.
,
Ma
,
Y.-Y.
,
Chen
,
Q.
, and
Jiang
,
Y. Q.
,
2021
, “
Effect of Initial Mixed Grain Microstructure State of Deformed Ni-Based Superalloy on Its Refinement Behavior During Two-Stage Annealing Treatment
,”
Mater. Charact.
,
176
, p.
111130
.
26.
Qlx
,
A.
,
Kcl
,
A.
,
Kyw
,
A.
,
Lyla
,
B.
,
Yu
,
Z. A.
,
Cjl
,
A.
, and
Cxl
,
A.
,
2021
, “
TGO and Al Diffusion Behavior of CuAlxNiCrFe High-Entropy Alloys Fabricated by High-Speed Laser Cladding for TBC Bond Coats—ScienceDirect
,”
Corros. Sci.
,
192
, pp.
1
13
.
27.
Vilaro
,
T.
,
Colin
,
C.
,
Bartout
,
J. D.
,
Nazé
,
L.
, and
Sennour
,
M.
,
2012
, “
Microstructural and Mechanical Approaches of the Selective Laser Melting Process Applied to a Nickel-Base Superalloy
,”
Mater. Sci. Eng. A
,
534
(
1
), pp.
446
451
.
28.
Dinda
,
G. P.
,
Dasgupta
,
A. K.
, and
Mazumder
,
J.
,
2009
, “
Laser Aided Direct Metal Deposition of Inconel 625 Superalloy: Microstructural Evolution and Thermal Stability
,”
Mater. Sci. Eng. A
,
509
(
1–2
), pp.
98
104
.
29.
Arisoy
,
Y. M.
,
Criales
,
L. E.
,
Ozel
,
T.
,
Lane
,
B.
,
Moylan
,
S.
, and
Donmez
,
A.
,
2017
, “
Influence of Scan Strategy and Process Parameters on Microstructure and Its Optimization in Additively Manufactured Nickel Alloy 625 via Laser Powder Bed Fusion
,”
Int. J. Adv. Manuf. Technol.
,
90
(
5–8
), pp.
1393
1417
.
30.
Karapuzha
,
A. S.
,
Fraser
,
D.
,
Schliephake
,
D.
,
Dietrich
,
S.
,
Zhu
,
Y.
,
Wu
,
X.
, and
Huang
,
A.
,
2021
, “
Microstructure, Mechanical Behaviour and Strengthening Mechanisms in Hastelloy X Manufactured by Electron Beam and Laser Beam Powder Bed Fusion
,”
J. Alloys Compd.
,
862
, p.
158034
.
31.
Wang
,
Q. Y.
,
Xi
,
Y. C.
,
Liu
,
X. Y.
,
Liu
,
S.
,
Bai
,
S. L.
, and
Liu
,
Z. D.
,
2017
, “
Microstructure and Mechanical Properties of Interface Between Laser Cladded Hastelloy Coating and Steel Substrate
,”
Trans. Nonferrous Met. Soc. China
,
27
(
3
), pp.
733
740
.
32.
Shu
,
D. L.
,
Tian
,
S. G.
,
Tian
,
N.
,
Xie
,
J.
, and
Su
,
Y.
,
2017
, “
Thermodynamic Analysis of Carbide Precipitation and Effect of Its Configuration on Creep Properties of FGH95 Powder Nickel-Based Superalloy
,”
Mater. Sci. Eng. A
,
700
(
17
), pp.
152
161
.
33.
Tachibana
,
S.
,
Kuronuma
,
Y.
,
Yokota
,
T.
,
Yamada
,
K.
,
Moriya
,
Y.
, and
Kami
,
C.
,
2015
, “
Effect of Hot Rolling and Cooling Conditions on Intergranular Corrosion Behavior in Alloy625 Clad Steel
,”
Corros. Sci.
,
99
, pp.
125
133
.
34.
Sahu
,
S.
,
Patel
,
S. K.
, and
Shekhar
,
S.
,
2020
, “
The Effect of Grain Boundary Structure on Chromium Carbide Precipitation in Alloy 600
,”
Mater. Chem. Phys.
,
260
, pp.
1
8
.
35.
Marola
,
S.
,
Bosia
,
S.
,
Veltro
,
A.
,
Fiore
,
G.
,
Manfredi
,
D.
,
Lombardi
,
M.
,
Amato
,
G.
,
Baricco
,
M.
, and
Battezzati
,
L.
,
2021
, “
Residual Stresses in Additively Manufactured AlSi10Mg: Raman Spectroscopy and X-ray Diffraction Analysis
,”
Mater. Des.
,
202
, pp.
1
12
.
36.
Tong
,
Z.
,
Ren
,
X.
,
Jiao
,
J.
,
Zhou
,
W.
,
Ren
,
Y.
,
Ye
,
Y.
,
Larson
,
E. A.
, and
Gu
,
J.
,
2019
, “
Laser Additive Manufacturing of FeCrCoMnNi High-Entropy Alloy: Effect of Heat Treatment on Microstructure, Residual Stress and Mechanical Property
,”
J. Alloys Compd.
,
785
, pp.
1144
1159
.
37.
Duan
,
R. X.
,
Huang
,
B. Y.
,
Liu
,
Z. M.
,
Peng
,
K.
, and
Xue-Qian
,
L.
,
2018
, “
Selective Laser Melting Fabrication and Cracking Behavior of Rene104 Nickel-Based Superalloy
,”
Trans. Nonferrous Met. Soc. China
,
28
(
8
), pp.
1568
1578
.
38.
Hadadzadeh
,
A.
,
Mokdad
,
F.
,
Wells
,
M. A.
, and
Chen
,
D. L.
,
2017
, “
A New Grain Orientation Spread Approach to Analyze the Dynamic Recrystallization Behavior of a Cast-Homogenized Mg-Zn-Zr Alloy Using Electron Backscattered Diffraction
,”
Mater. Sci. Eng. A
,
709
, pp.
285
289
.
39.
Xie
,
P. J.
, and
B
,
J.
,
1998
,
Mechanical Analysis of Stripping Wear in Metal Materials
,
Henan University Science Technology
,
Luoyang City, China
.
40.
Yan
,
X.
,
Chang
,
C.
,
Deng
,
Z.
,
Lu
,
B
,
Chu
,
Q.
,
Chen
,
X.
,
Ma
,
W.
,
Liao
,
H.
, and
Liu
,
M.
,
2021
, “
Microstructure, Interface Characteristics and Tribological Properties of Laser Cladded NiCrBSi-WC Coatings on PH 13-8 Mo Steel
,”
Tribol. Int.
,
157
, p.
106873
.
41.
Bahshwan
,
M.
,
Myant
,
C. W.
,
Reddyhoff
,
T.
, and
Pham
,
M. S.
,
2020
, “
The Role of Microstructure on Wear Mechanisms and Anisotropy of Additively Manufactured 316 L Stainless Steel in Dry Sliding
,”
Mater. Des.
,
196
, p.
109076
.
42.
Careri
,
F.
,
Umbrello
,
D.
,
Essa
,
K.
,
Attallah
,
M. M.
, and
Imbrogno
,
S.
,
2021
, “
The Effect of the Heat Treatments on the Tool Wear of Hybrid Additive Manufacturing of IN718
,”
Wear
,
470
, pp.
1
10
.
43.
Chen
,
J.
,
Wang
,
J. Z.
,
Yan
,
F. Y.
,
Zhang
,
Q.
, and
Li
,
Q. A.
,
2015
, “
Corrosion Wear Synergistic Behavior of Hastelloy C276 Alloy in Artificial Seawater
,”
Trans. Nonferrous Met. Soc. China
,
25
(
2
), pp.
661
668
.
44.
Meng
,
J.
,
Lu
,
J.
,
Wang
,
J.
, and
Yang
,
S.
,
2004
, “
Tribological Behavior of MoSi2 and Its Composites in Sliding Against Ni-Based Alloys
,”
Tribol. Lett.
,
16
(
1–2
), pp.
37
42
.
45.
Zhi
,
L.
,
2003
, “
Change Mechanism of Wear Debris for Nickel-Based Alloy Coating During Sliding Wear
,”
Lubr. Eng.
,
3
, pp.
48
53
.
46.
Nagai
,
A.
,
Tsutsumi
,
Y.
,
Suzuki
,
Y.
,
Katayama
,
K.
,
Hanawa
,
T.
, and
Yamashita
,
K.
,
2012
, “
Characterization of Air-Formed Surface Oxide Film on a Co–Ni–Cr–Mo Alloy (MP35N) and Its Change in Hanks’ Solution
,”
Appl. Surf. Sci.
,
258
(
14
), pp.
5490
5498
.
47.
Sharma
,
S.
,
Sangal
,
S.
, and
Mondal
,
K.
,
2013
, “
On the Optical Microscopic Method for the Determination of Ball-on-Flat Surface Linearly Reciprocating Sliding Wear Volume
,”
Wear
,
300
(
1–2
), pp.
82
89
.
48.
Jeon
,
S.
,
Liu
,
X.
,
Azersky
,
C.
,
Ren
,
J.
, and
Matson
,
D. M.
,
2021
, “
Particle Size Effects on Dislocation Density, Microstructure, and Phase Transformation for High-Entropy Alloy Powders
,”
Materilai
,
18
, p.
101161
.
You do not currently have access to this content.