Abstract

The upper convected Maxwell (UCM) model is one of the ways to describe lubricant’s viscoelasticity. In this paper, a new modified Reynolds equation for the UCM model is derived. This equation may be called extended as compared to its analogs because it incorporates the complete structure of the upper convected derivative without the explicit omitting of any term or using the perturbation technique. Then, a numerical scheme for solving the viscoelastic lubrication problems with the employment of the derived equation is described. A mixed Euler–Lagrange approach is used here: the constitutive rheological equations are resolved by a semi-Lagrangian technique and the extended Reynolds equation is discretized by the finite volume method. A constant surface slope problem is considered as a test case. Excellent agreement is achieved between the numerical solution at low Deborah number and one of the approximate solutions. The results of simulations with different types of time derivative used in Maxwell model both for two- and three-dimensional cases are also discussed.

References

1.
Li
,
X. K.
,
Luo
,
Y.
,
Qi
,
Y.
, and
Zhang
,
R.
,
2011
, “
On Non-Newtonian Lubrication With the Upper Convected Maxwell Model
,”
Appl. Math. Model.
,
35
(
5
), pp.
2309
2323
.
2.
Szeri
,
A. Z.
,
2011
,
Fluid Film Lubrication
, 2nd ed.,
Cambridge University Press
,
New York
.
3.
Lakes
,
R.
,
2009
,
Viscoelastic Materials
,
Cambridge University Press
,
New York
.
4.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymetric Liquids, Vol. 1: Fluid Mechanics
,
Wiley
,
New York
.
5.
Oldroyd
,
J. G.
,
1950
, “
On the Formulation of Rheological Equations of State
,”
Proc. R. Soc. London A
,
200
(
1063
), pp.
523
541
.
6.
Macosko
,
C. W.
,
1994
,
Rheology: Principles, Measurements, and Applications
,
Wiley-VCH
,
New York
.
7.
Spagnolie
,
S. E.
,
2015
,
Complex Fluids in Biological Systems: Experiment, Theory, and Computation
,
Springer
,
New York
.
8.
Johnson
,
K. L.
, and
Tevaarwerk
,
J. L.
,
1977
, “
Shear Behaviour of Elastohydrodynamic Oil Films
,”
Proc. R. Soc. London A
,
356
(
1685
), pp.
215
236
.
9.
Najji
,
B.
,
Bou-Said
,
B.
, and
Berthe
,
D.
,
1989
, “
New Formulation for Lubrication With Non-Newtonian Fluids
,”
ASME J. Tribol.
,
111
(
1
), pp.
29
34
.
10.
Wolff
,
R.
, and
Kubo
,
A.
,
1996
, “
A Generalized Non-Newtonian Fluid Model Incorporated Into Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
118
(
1
), pp.
74
82
.
11.
Tichy
,
J. A.
,
1996
, “
Non-Newtonian Lubrication With the Convected Maxwell Model
,”
ASME J. Tribol.
,
118
(
2
), pp.
344
348
.
12.
Bayada
,
G.
,
Chupin
,
L.
, and
Martin
,
S.
,
2011
, “
From the Phan–Thien–Tanner/Oldroyd-B Non-Newtonian Model to the Double Shear Thining Rabinowisch Thin Film Model
,”
ASME J. Tribol.
,
133
(
3
), p.
031802
.
13.
Ahmed
,
H.
, and
Biancofiore
,
L.
,
2021
, “
A New Approach for Modeling Viscoelastic Thin Film Lubrication
,”
J. Non-Newtonian Fluid Mech.
,
292
, p.
104524
.
14.
Akyildiz
,
F. T.
, and
Bellout
,
H.
,
2004
, “
Viscoelastic Lubrication With Phan–Thein–Tanner Fluid (PTT)
,”
ASME J. Tribol.
,
126
(
2
), pp.
288
291
.
15.
Tichy
,
J.
, and
Bou-Saïd
,
B.
,
2008
, “
The Phan–Thien and Tanner Model Applied to Thin Film Spherical Coordinates: Applications for Lubrication of Hip Joint Replacement
,”
ASME J. Biomech. Eng.
,
130
(
2
), p.
021012
.
16.
Yousfi
,
M.
,
Bou-Saïd
,
B.
, and
Tichy
,
J.
,
2013
, “
An Analytical Study of the Squeezing Flow of Synovial Fluid
,”
Mech. Ind.
,
14
(
1
), pp.
59
69
.
17.
Peiran
,
Y.
, and
Shizhu
,
W.
,
1990
, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
(
4
), pp.
631
636
.
18.
Boucherit
,
H.
,
Lahmar
,
M.
,
Bou-Saïd
,
B.
, and
Tichy
,
J.
,
2010
, “
Comparison of Non-Newtonian Constitutive Laws in Hydrodynamic Lubrication
,”
Tribol. Lett.
,
40
(
1
), pp.
49
57
.
19.
Xiaodi
,
L.
,
Haosheng
,
C.
,
Darong
,
C.
, and
Jiadao
,
W.
,
2009
, “Normal Stress Effects in Journal Bearing Lubrication With Maxwell Fluid,”
Advanced Tribology
,
Springer
,
Berlin, Heidelberg
, pp.
231
234
.
20.
Kalnay
,
E.
,
2003
,
Atmospheric Modeling, Data Assimilation and Predictability
,
Cambridge University Press
,
New York
.
21.
Ingelsten
,
S.
,
Mark
,
A.
, and
Edelvik
,
F.
,
2019
, “
A Lagrangian–Eulerian Framework for Simulation of Transient Viscoelastic Fluid Flow
,”
J. Non-Newtonian Fluid Mech.
,
266
, pp.
20
32
.
22.
Dafermos
,
C. M.
,
2008
, “Handbook of Differential Equations: Evolutionary Equations,
Vol. IV
,
C. M.
Dafermos
, and
M.
Pokorny
, eds.,
Elsevier
,
North-Holland
.
23.
Papanastasiou
,
T. C.
,
Malamataris
,
N.
, and
Ellwood
,
K.
,
1992
, “
A New Outflow Boundary Condition
,”
Int. J. Numer. Methods Fluids
,
14
(
5
), pp.
587
608
.
24.
Renardy
,
M.
,
1997
, “
Imposing ‘No’ Boundary Condition at Outflow: Why Does It Work?
Int. J. Numer. Methods Fluids
,
24
(
4
), pp.
413
417
.
25.
Dimakopoulos
,
Y.
,
Karapetsas
,
G.
,
Malamataris
,
N. A.
, and
Mitsoulis
,
E.
,
2012
, “
The Free (Open) Boundary Condition at Inflow Boundaries
,”
J. Non-Newtonian Fluid Mech.
,
187–188
, pp.
16
31
.
26.
Dimakopoulos
,
Y.
,
Bogaerds
,
A. C. B.
,
Anderson
,
P. D.
,
Hulsen
,
M. A.
, and
Baaijens
,
F. P. T.
,
2012
, “
Direct Numerical Simulation of a 2D-Stented Aortic Heart Valve at Physiological Flow Rates
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
11
), pp.
1157
1179
.
You do not currently have access to this content.