Abstract
A computational fluid dynamics analysis of two-phase flow was used to obtain the distribution of lubricant in a journal bearing, including inlet tube and groove. It was found that for an incomplete starting film, the oil spread-length varies along the groove depth and film thickness. The magnitude of variation was found to be independent of the inlet mass flowrate. Numerical simulations of the proposed model show that in the cavitation region, the streamlets do not fill the entire film thickness. The present numerical model agrees with experimental observations.
Issue Section:
Hydrodynamic Lubrication
References
1.
Pinkus
, O.
, and Sternlicht
, B.
, 1961
, Theory of Hydrodynamic Lubrication
, McGraw-Hm
, New York
, Chap. 4.2.
Sinha
, P.
, Singh
, C.
, and Prasad
, K. R.
, 1983
, “Viscosity Variation Considering Cavitation in a Journal Bearing Lubricant Containing Additives
,” Wear
, 86
(1
), pp. 43
–56
. 3.
Sinha
, P.
, Singh
, C.
, and Prasad
, K. R.
, 1981
, “Effect of Viscosity Variation Due to Lubricant Additives in Journal Bearings
,” Wear
, 66
(2
), pp. 175
–188
. 4.
Etsion
, I.
, and Pinkus
, O.
, 1974
, “Analysis of Short Journal Bearings With New Upstream Boundary Conditions
,” ASME J. Lubr. Technol.
, 96
(3
), pp. 489
–496
. 5.
Etsion
, I.
, and Pinkus
, O.
, 1975
, “Solutions of Finite Journal Bearings With Incomplete Films
,” ASME J. Lubr. Technol.
, 97
(1
), pp. 89
–100
. 6.
Lin
, J.-F.
, Liu
, H.-W.
, and Li
, W.-L.
, 1990
, “Isothermal Analysis of Finite-Width, Partial-Arc Journal Bearing With New Upstream Boundary Conditions: Part I
,” Tribol. Int.
, 23
(1
), pp. 27
–34
. 7.
Claro
, J. C. P.
, and Miranda
, A. A. S.
, 1993
, “Analysis of Hydrodynamic Journal Bearings Considering Lubricant Supply Conditions
,” Proc. Inst. Mech. Eng. Part C
, 207
(2
), pp. 93
–101
. 8.
Cole
, J. A.
, and Hughes
, C. J.
, 1956
, “Oil Flow and Film Extent in Complete Journal Bearings
,” Proc. Inst. Mech. Eng.
, 170
(1
), pp. 499
–510
. 9.
Dowson
, D.
, Taylor
, C. M.
, and Miranda
, A. A. S.
, 1985
, “The Prediction of Liquid Film Journal Bearing Performance With a Consideration of Lubricant Film Reformation: Part 2: Experimental Results
,” Proc. Inst. Mech. Eng. Part C
, 199
(2
), pp. 103
–111
. 10.
Okamoto
, Y.
, Mochizuki
, M.
, Mizuno
, Y.
, and Tanaka
, T.
, 1995
, “Experimental Study for the Oil Flow Supplied From Oil Hole on Statically Loaded Bearings,” SAE International, SAE Technical Paper 950947. 11.
Wei
, S.
, Zhang
, H.
, Kligerman
, Y.
, Goltsberg
, R.
, and Etsion
, I.
, 2021
, “Analysis of Incomplete Film in Parallel Plates Including Inlet Tube and Groove
,” ASME J. Tribol.
, 143
(11
), p. 111804
. 12.
Ochiai
, M.
, Sakai
, F.
, and Hashimoto
, H.
, 2019
, “Reproducibility of Gaseous Phase Area on Journal Bearing Utilizing Multi-Phase Flow CFD Analysis Under Flooded and Starved Lubrication Conditions
,” Lubricants
, 7
(9
), p. 74
. 13.
Ding
, A.
, Ren
, X.
, Li
, X.
, and Gu
, C.
, 2020
, “Numerical Investigation for Characteristics and Oil–Air Distributions of Oil Film in a Tilting-Pad Journal Bearing
,” Proc. Inst. Mech. Eng. Part J
, 234
(2
), pp. 193
–204
. 14.
Egbers
, C.
, Gorenz
, P.
, Schmidt
, M.
, and Wolf
, C.
, 2015
, “3-D CFD Simulation of the Lubrication Film in a Journal Bearing
,” MTZ Worldw.
, 76
(7
), pp. 40
–47
. 15.
Li
, Q.
, Zhang
, S.
, Wang
, Y.
, Xu
, W.-W.
, and Wang
, Z.
, 2019
, “Investigations of the Three-Dimensional Temperature Field of Journal Bearings Considering Conjugate Heat Transfer and Cavitation
,” Ind. Lubr. Tribol.
, 71
(1
), pp. 109
–118
. 16.
Vladescu
, S.-C.
, Marx
, N.
, Fernández
, L.
, Barceló
, F.
, and Spikes
, H.
, 2018
, “Hydrodynamic Friction of Viscosity-Modified Oils in a Journal Bearing Machine
,” Tribol. Lett.
, 66
(4
), pp. 1
–15
. 17.
Raimondi
, A. A.
, 1961
, “A Numerical Solution for the Gas Lubricated Full Journal Bearing of Finite Length
,” ASLE Trans.
, 4
(1
), pp. 131
–155
. 18.
Susilowati
, T. M.
, Jamari
, J.
, Bayuseno
, A. P.
, and Muchammad
, 2016
, “A Comparative Study of Finite Journal Bearing in Laminar and Turbulent Regimes Using CFD (Computational Fluid Dynamic)
,” MATEC Web Conf.
, 58
(1
), pp. 10
–13
. 19.
Mirjalili
, S.
, Ivey
, C. B.
, and Mani
, A.
, 2019
, “Comparison Between the Diffuse Interface and Volume of Fluid Methods for Simulating Two-Phase Flows
,” Int. J. Multiphase Flow
, 116
(7
), pp. 221
–238
. 20.
Yu
, R.
, Li
, P.
, and Chen
, W.
, 2016
, “Study of Grease Lubricated Journal Bearing With Partial Surface Texture
,” Ind. Lubr. Tribol.
, 68
(2
), pp. 149
–157
. 21.
Brennen
, C. E.
, 1995
, Cavitation and Bubble Dynamics, Chapter 2
, Cambridge University Press
, Cambridge
.22.
Sauer
, J.
, and Schnerr
, G. H.
, 2001
, “Development of a New Cavitation Model Based on Bubble Dynamics
,” ZAMM J. Appl. Math. Mech.
, 81
(S3
), pp. 561
–562
. 23.
Fluent
, A.
, 2013
, Ansys Fluent Theory Guide
, 15th ed., ANSYS Inc
, Canonsburg, PA
, Chap. 17.24.
Hirt
, C. W.
, and Nichols
, B. D.
, 1981
, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,” J. Comput. Phys.
, 39
(1
), pp. 201
–225
. 25.
Kellogg
, R. B.
, Shubin
, G. R.
, and Stephens
, A. B.
, 1980
, “Uniqueness and the Cell Reynolds Number
,” SIAM J. Numer. Anal.
, 17
(6
), pp. 733
–739
. Copyright © 2021 by ASME
You do not currently have access to this content.