Abstract

A computational fluid dynamics analysis of two-phase flow was used to obtain the distribution of lubricant in a journal bearing, including inlet tube and groove. It was found that for an incomplete starting film, the oil spread-length varies along the groove depth and film thickness. The magnitude of variation was found to be independent of the inlet mass flowrate. Numerical simulations of the proposed model show that in the cavitation region, the streamlets do not fill the entire film thickness. The present numerical model agrees with experimental observations.

References

1.
Pinkus
,
O.
, and
Sternlicht
,
B.
,
1961
,
Theory of Hydrodynamic Lubrication
,
McGraw-Hm
,
New York
, Chap. 4.
2.
Sinha
,
P.
,
Singh
,
C.
, and
Prasad
,
K. R.
,
1983
, “
Viscosity Variation Considering Cavitation in a Journal Bearing Lubricant Containing Additives
,”
Wear
,
86
(
1
), pp.
43
56
.
3.
Sinha
,
P.
,
Singh
,
C.
, and
Prasad
,
K. R.
,
1981
, “
Effect of Viscosity Variation Due to Lubricant Additives in Journal Bearings
,”
Wear
,
66
(
2
), pp.
175
188
.
4.
Etsion
,
I.
, and
Pinkus
,
O.
,
1974
, “
Analysis of Short Journal Bearings With New Upstream Boundary Conditions
,”
ASME J. Lubr. Technol.
,
96
(
3
), pp.
489
496
.
5.
Etsion
,
I.
, and
Pinkus
,
O.
,
1975
, “
Solutions of Finite Journal Bearings With Incomplete Films
,”
ASME J. Lubr. Technol.
,
97
(
1
), pp.
89
100
.
6.
Lin
,
J.-F.
,
Liu
,
H.-W.
, and
Li
,
W.-L.
,
1990
, “
Isothermal Analysis of Finite-Width, Partial-Arc Journal Bearing With New Upstream Boundary Conditions: Part I
,”
Tribol. Int.
,
23
(
1
), pp.
27
34
.
7.
Claro
,
J. C. P.
, and
Miranda
,
A. A. S.
,
1993
, “
Analysis of Hydrodynamic Journal Bearings Considering Lubricant Supply Conditions
,”
Proc. Inst. Mech. Eng. Part C
,
207
(
2
), pp.
93
101
.
8.
Cole
,
J. A.
, and
Hughes
,
C. J.
,
1956
, “
Oil Flow and Film Extent in Complete Journal Bearings
,”
Proc. Inst. Mech. Eng.
,
170
(
1
), pp.
499
510
.
9.
Dowson
,
D.
,
Taylor
,
C. M.
, and
Miranda
,
A. A. S.
,
1985
, “
The Prediction of Liquid Film Journal Bearing Performance With a Consideration of Lubricant Film Reformation: Part 2: Experimental Results
,”
Proc. Inst. Mech. Eng. Part C
,
199
(
2
), pp.
103
111
.
10.
Okamoto
,
Y.
,
Mochizuki
,
M.
,
Mizuno
,
Y.
, and
Tanaka
,
T.
,
1995
, “Experimental Study for the Oil Flow Supplied From Oil Hole on Statically Loaded Bearings,” SAE International, SAE Technical Paper 950947.
11.
Wei
,
S.
,
Zhang
,
H.
,
Kligerman
,
Y.
,
Goltsberg
,
R.
, and
Etsion
,
I.
,
2021
, “
Analysis of Incomplete Film in Parallel Plates Including Inlet Tube and Groove
,”
ASME J. Tribol.
,
143
(
11
), p.
111804
.
12.
Ochiai
,
M.
,
Sakai
,
F.
, and
Hashimoto
,
H.
,
2019
, “
Reproducibility of Gaseous Phase Area on Journal Bearing Utilizing Multi-Phase Flow CFD Analysis Under Flooded and Starved Lubrication Conditions
,”
Lubricants
,
7
(
9
), p.
74
.
13.
Ding
,
A.
,
Ren
,
X.
,
Li
,
X.
, and
Gu
,
C.
,
2020
, “
Numerical Investigation for Characteristics and Oil–Air Distributions of Oil Film in a Tilting-Pad Journal Bearing
,”
Proc. Inst. Mech. Eng. Part J
,
234
(
2
), pp.
193
204
.
14.
Egbers
,
C.
,
Gorenz
,
P.
,
Schmidt
,
M.
, and
Wolf
,
C.
,
2015
, “
3-D CFD Simulation of the Lubrication Film in a Journal Bearing
,”
MTZ Worldw.
,
76
(
7
), pp.
40
47
.
15.
Li
,
Q.
,
Zhang
,
S.
,
Wang
,
Y.
,
Xu
,
W.-W.
, and
Wang
,
Z.
,
2019
, “
Investigations of the Three-Dimensional Temperature Field of Journal Bearings Considering Conjugate Heat Transfer and Cavitation
,”
Ind. Lubr. Tribol.
,
71
(
1
), pp.
109
118
.
16.
Vladescu
,
S.-C.
,
Marx
,
N.
,
Fernández
,
L.
,
Barceló
,
F.
, and
Spikes
,
H.
,
2018
, “
Hydrodynamic Friction of Viscosity-Modified Oils in a Journal Bearing Machine
,”
Tribol. Lett.
,
66
(
4
), pp.
1
15
.
17.
Raimondi
,
A. A.
,
1961
, “
A Numerical Solution for the Gas Lubricated Full Journal Bearing of Finite Length
,”
ASLE Trans.
,
4
(
1
), pp.
131
155
.
18.
Susilowati
,
T. M.
,
Jamari
,
J.
,
Bayuseno
,
A. P.
, and
Muchammad
,
2016
, “
A Comparative Study of Finite Journal Bearing in Laminar and Turbulent Regimes Using CFD (Computational Fluid Dynamic)
,”
MATEC Web Conf.
,
58
(
1
), pp.
10
13
.
19.
Mirjalili
,
S.
,
Ivey
,
C. B.
, and
Mani
,
A.
,
2019
, “
Comparison Between the Diffuse Interface and Volume of Fluid Methods for Simulating Two-Phase Flows
,”
Int. J. Multiphase Flow
,
116
(
7
), pp.
221
238
.
20.
Yu
,
R.
,
Li
,
P.
, and
Chen
,
W.
,
2016
, “
Study of Grease Lubricated Journal Bearing With Partial Surface Texture
,”
Ind. Lubr. Tribol.
,
68
(
2
), pp.
149
157
.
21.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics, Chapter 2
,
Cambridge University Press
,
Cambridge
.
22.
Sauer
,
J.
, and
Schnerr
,
G. H.
,
2001
, “
Development of a New Cavitation Model Based on Bubble Dynamics
,”
ZAMM J. Appl. Math. Mech.
,
81
(
S3
), pp.
561
562
.
23.
Fluent
,
A.
,
2013
,
Ansys Fluent Theory Guide
, 15th ed.,
ANSYS Inc
,
Canonsburg, PA
, Chap. 17.
24.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
25.
Kellogg
,
R. B.
,
Shubin
,
G. R.
, and
Stephens
,
A. B.
,
1980
, “
Uniqueness and the Cell Reynolds Number
,”
SIAM J. Numer. Anal.
,
17
(
6
), pp.
733
739
.
You do not currently have access to this content.