Abstract

The paper introduces a simplified structural model for the numerical investigation of bump-type foil bearings. This analytical model is based on an efficient nonlinear contact procedure with consideration of friction, small deformations, and elasticity. The bump foil is modeled with a truss structure, while the top foil uses two-dimensional (2D) beam elements. In this present model, the normal and tangential contact forces between the bump foil and the bearing sleeve and between the foils are dealt with the penalty method. Even for a simple loading, the contact state might change between separation, stick, and slip. To avoid convergence problems caused by discontinuity, the regularized smooth friction model is used instead of the Coulomb friction model. In addition, due to contact problems that depend on time are accompanied by nonlinear evolution, the solution of the system equation using the incremental iterative method and the Newton–Raphson method is presented. The deflection of the top foil is added to the film controlled by the Reynolds equation (RE) to obtain the air pressure distribution. The theoretical predictions of the rotor push-pull tests agree well with results from the literature, which verifies the validity of the model. Using this present model, the quasi-static behaviors of the foil structure are mainly discussed, and parametric studies concerning environmental pressure and radial clearance are also conducted.

References

1.
Agrawal
,
G. L.
,
1997
, “
Foil Air/Gas Bearing Technology—An Overview
,” ASME Paper No. 97-GT-347.
2.
Samanta
,
P.
,
Murmu
,
N. C.
, and
Khonsari
,
M. M.
,
2019
, “
The Evolution of Foil Bearing Technology
,”
Tribol. Int.
,
135
, pp.
305
323
.
3.
DellaCorte
,
C.
, and
Valco
,
M. J.
,
2000
, “
Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications
,”
Tribol. Trans.
,
43
(
4
), pp.
795
801
.
4.
San Andrés
,
L.
,
1995
, “
Turbulent Flow Foil Bearings for Cryogenic Applications
,”
ASME J. Tribol.
,
117
(
1
), pp.
185
195
.
5.
Walowit
,
J. A.
, and
Anno
,
J. N.
,
1975
,
Modern Developments in Lubrication Mechanics
,
Appiled Science Publishers
,
London
, Chap. 7.
6.
Heshmat
,
H.
,
Walowit
,
J. A.
, and
Pinkus
,
O.
,
1983
, “
Analysis of Gas-Lubricated Compliant Thrust Bearings
,”
ASME J. Lubr. Technol.
,
105
(
4
), pp.
638
646
.
7.
Heshmat
,
H.
,
Walowit
,
J. A.
, and
Pinkus
,
O.
,
1983
, “
Analysis of Gas-Lubricated Foil Journal Bearings
,”
ASME J. Lubr. Technol.
,
105
(
4
), pp.
647
655
.
8.
Bonello
,
P.
, and
Pham
,
H. M.
,
2014
, “
The Efficient Computation of the Nonlinear Dynamic Response of a Foil-Air Bearing Rotor System
,”
J. Sound Vib.
,
333
(
15
), pp.
3459
3478
.
9.
Kim
,
T. H.
, and
San Andrés
,
L.
,
2009
, “
Effect of Side Feed Pressurization on the Dynamic Performance of Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME J. Eng. Gas Turbines Power
,
131
(
1
), p.
012501
.
10.
Peng
,
Z. C.
, and
Khonsari
,
M. M.
,
2004
, “
Hydrodynamic Analysis of Compliant Foil Bearings With Compressible Air Flow
,”
ASME J. Tribol.
,
126
(
3
), pp.
542
546
.
11.
Peng
,
Z. C.
, and
Khonsari
,
M. M.
,
2006
, “
A Thermohydrodynamic Analysis of Foil Journal Bearings
,”
ASME J. Tribol.
,
128
(
3
), pp.
534
541
.
12.
Iordanoff
,
I.
,
1999
, “
Analysis of an Aerodynamic Compliant Foil Thrust Bearing: Method for a Rapid Design
,”
ASME J. Tribol.
,
121
(
4
), pp.
816
822
.
13.
Peng
,
J. P.
, and
Carpino
,
M.
,
1994
, “
Coulomb Friction Damping Effects in Elastically Supported Gas Foil Bearings
,”
Tribol. Trans.
,
37
(
1
), pp.
91
98
.
14.
Carpino
,
M.
,
Medvetz
,
L. A.
, and
Peng
,
J. P.
,
1994
, “
Effects of Membrane Stresses in the Prediction of Foil Bearing Performance
,”
Tribol.Trans.
,
37
(
1
), pp.
43
50
.
15.
Carpino
,
M.
,
Peng
,
J. P.
, and
Medvetz
,
L. A.
,
1994
, “
Misalignment in a Complete Shell Gas Foil Journal Bearing
,”
Tribol. Trans.
,
37
(
4
), pp.
829
835
.
16.
Carpino
,
M.
, and
Talmage
,
G.
,
2003
, “
A Fully Coupled Finite Element Formulation for Elastically Supported Foil Journal Bearings
,”
Tribol. Trans.
,
46
(
4
), pp.
560
565
.
17.
Andrés
,
S.
,
and Kim
,
L.
, and
H
,
T.
,
2007
, “
Improvements to the Analysis of Gas Foil Bearings: Integration of Top Foil 1D and 2D Structural Models
,” ASME Paper No. GT 2007-27249.
18.
Kim
,
D.
, and
Park
,
S.
,
2009
, “
Hydrostatic Air Foil Bearings: Analytical and Experimental Investigations
,”
Tribol. Int.
,
42
(
3
), pp.
413
425
.
19.
Lee
,
D. H.
,
Kim
,
Y. C.
, and
Kim
,
K. W.
,
2010
, “
The Effect of Coulomb Friction on the Static Performance of Foil Journal Bearings
,”
Tribol. Int.
,
43
(
5–6
), pp.
1065
1072
.
20.
Roger Ku
,
C. P.
, and
Heshmat
,
H.
,
1992
, “
Compliant Foil Bearing Structural Stiffness Analysis-Part I: Theoretical Model Including Strip and Variable Bump Foil Geometry
,”
ASME J. Tribol.
,
114
(
2
), pp.
394
400
.
21.
Zhao
,
X.
, and
Xiao
,
S.
,
2020
, “
A Finite Element Model for Static Performance Analysis of Gas Foil Bearings Based on Frictional Contacts
,”
Tribol. Trans.
,
64
(
2
), pp.
275
286
.
22.
Wriggers
,
P.
, and
Zavarise
,
G.
,
2006
,
Computational Contact Mechanics
, 2nd ed., Vol.
518
,
Springer-Verlag
,
Berlin
, pp.
195
226
.
23.
Zhao
,
X.
, and
Xiao
,
S.
,
2021
, “
A Three-Dimensional Model of Gas Foil Bearings and the Effect of Misalignment on the Static Performance of the First and Second Generation Foil Bearings
,”
Tribol. Int.
,
156
, p.
106821
.
24.
Barzem
,
L.
,
Bou-said
,
B.
,
Rocchi
,
J.
, and
Grau
,
G.
,
2013
, “
Aero-Elastic Bearing Effects on Rotor Dynamics: A Numerical Analysis
,”
Lubr. Sci.
,
25
(
7
), pp.
463
478
.
25.
Larsen
,
J. S.
,
Varela
,
A. C.
, and
Santos
,
I. F.
,
2014
, “
Numerical and Experimental Investigation of Bump Foil Mechanical Behaviour
,”
Tribol. Int.
,
74
, pp.
46
56
.
26.
Lehn
,
A.
,
Mahner
,
M.
, and
Schweizer
,
B.
,
2015
, “
Elasto-Gasdynamic Modeling of Air Foil Thrust Bearings With a Two-Dimensional Shell Model for Top and Bump Foil
,”
Tribol. Int.
,
100
, pp.
48
59
.
27.
Le Lez
,
S.
,
Arghir
,
M.
, and
Frene
,
J.
,
2007
, “
Static and Dynamic Characterization of a Bump-Type Foil Bearing Structure
,”
ASME J. Tribol.
,
129
(
1
), pp.
75
83
.
28.
Liu
,
J.
, and
Du
,
F.
,
2012
, “
Simulation of Compliant Bump Foil Journal Bearing Using Coupled Reynolds Equation and Finite Element Model Method
,”
Adv. Mater. Res.
,
479–481
, pp.
2499
2503
.
29.
Żywica
,
G.
,
2013
, “
The Dynamic Performance Analysis of the Foil Bearing Structure
,”
Acta Mech. Autom.
,
7
(
1
), pp.
58
62
.
30.
Le Lez
,
S.
,
Arghir
,
M.
, and
Frene
,
J.
,
2007
, “
A New Bump-Type Foil Bearing Structure Analytical Model
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
1047
1057
.
31.
Le Lez
,
S.
,
Arghir
,
M.
, and
Frene
,
J.
,
2008
, “
A Dynamic Model for Dissipative Structures Used in Bump-Type Foil Bearings
,”
Tribol. Trans.
,
52
(
1
), pp.
36
46
.
32.
Arghir
,
M.
, and
Benchekroun
,
O.
,
2019
, “
A Simplified Structural Model of Bump-Type Foil Bearings Based on Contact Mechanics Including Gaps and Friction
,”
Tribol. Int.
,
134
, pp.
129
144
.
33.
Arghir
,
M.
, and
Benchekroun
,
O.
,
2019
, “
A New Structural Bump Foil Model With Application From Start-Up to Full Operating Conditions
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101017
.
34.
Fatu
,
A.
, and
Arghir
,
M.
,
2017
, “
Numerical Analysis of the Impact of Manufacturing Errors on the Structural Stiffness of Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041506
.
35.
Rudloff
,
L.
,
Arghir
,
M.
, and
Matta
,
P.
,
2011
, “
Experimental Analyses of a First Generation Foil Bearing. Start-Up Torque and Dynamic Coefficients
,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p.
092501
.
36.
Ruscitto
,
D.
,
Mc Cormick
,
J.
, and
Gray
,
S.
,
1978
,
Hydrodynamic Air Lubricated Compliant Surface Bearing for an Automotive Gas Turbine Engine I-Journal Bearing Performance
,
NASA, Lewis Research Center
,
Cleveland, OH
, Report No. NASA CR-13536.
37.
Feng
,
K.
, and
Kaneko
,
S.
,
2009
, “
Link-Spring Model of Bump-Type Foil Bearings
,” ASME Paper No. GT 2009-59260.
38.
Feng
,
K.
, and
Kaneko
,
S.
,
2010
, “
Analytical Model of Bump-Type Foil Bearings Using a Link-Spring Structure and a Finite-Element Shell Model
,”
ASME J. Tribol.
,
132
(
2
), p.
021706
.
39.
Hoffmann
,
R.
,
Munz
,
O.
,
Pronobis
,
T.
,
Barth
,
E.
, and
Liebich
,
R.
,
2018
, “
A Valid Method of Gas Foil Bearing Parameter Estimation: A Model Anchored on Experimental Data
,”
J. Mech. Eng. Sci.
,
232
(
24
), pp.
4510
4527
.
40.
Hoffmann
,
R.
, and
Liebich
,
R.
,
2017
, “
Experimental and Numerical Analysis of the Dynamic Behaviour of a Foil Bearing Structure Affected by Metal Shims
,”
Tribol. Int.
,
115
, pp.
378
388
.
41.
Cook
,
D. R.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2001
,
Concepts and Applications of Finite Element Analysis
, 4th ed.,
John Wiley and Sons
,
Hoboken, NJ
.
You do not currently have access to this content.