Abstract

The purpose of this study is to investigate the effect of TiB2 content on the microstructure and wear behavior of nano-TiB2p/2024Al composites fabricated by laser direct energy deposition (L-DED). The dry sliding friction and wear behavior was evaluated using a ball-on-disk tribometer by sliding samples against a 6-mm diameter GCr15 (AISI52100) steel ball under applied loads of 2.2 N at room temperature. Microstructural characterization of the as-deposited 2024Al alloy showed the presence of oriented columnar grains. Once 3 wt% TiB2 particles were introduced, the as-deposited microstructure consisted of a mixture of columnar and equiaxed grains. It was found that the addition of TiB2 particles can significantly improve the wear resistance of L-DEDed 2024Al. For instance, the wear-rate of an 8 wt% TiB2p/2024Al matrix composite with full equiaxed grains is almost 20 times lower than that of the unreinforced alloy. A grain morphology-induced wear mechanism for the L-DEDed TiB2p/2024Al composites is proposed and is dominated by mutual oxidation and abrasive wear. The research results are beneficial to understand the wear mechanism of L-DEDed nano-TiB2p/2024Al matrix composites and can also provide theoretical guidance for the selection of TiB2 content.

References

References
1.
Martin
,
J. H.
,
Yahata
,
B. D.
,
Hundley
,
J. M.
,
Mayer
,
J. A.
,
Schaedler
,
T. A.
, and
Pollock
,
T. M.
,
2017
, “
3D Printing of High-Strength Aluminium Alloys
,”
Nature
,
549
(
7672
), pp.
365
369
. 10.1038/nature23894
2.
Olakanmi
,
E. O.
,
Cochrane
,
R. F.
, and
Dalgarno
,
K. W.
,
2015
, “
A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties
,”
Progress Mater. Sci.
,
74
, pp.
401
477
. 10.1016/j.pmatsci.2015.03.002
3.
Gu
,
D.
,
Jue
,
J.
,
Dai
,
D.
,
Lin
,
K.
, and
Chen
,
W.
,
2018
, “
Effects of dry Sliding Conditions on Wear Properties of al-Matrix Composites Produced by Selective Laser Melting Additive Manufacturing
,”
ASME J. Tribol.
,
140
(
2
), p.
021605
. 10.1115/1.4037729
4.
Tee
,
K. L.
,
Lu
,
L.
, and
Lai
,
M. O.
,
2000
, “
Wear Performance of in-Situ Al–TiB2 Composite
,”
Wear
,
240
(
1–2
), pp.
59
64
. 10.1016/S0043-1648(00)00337-9
5.
Chi
,
H.
,
Jiang
,
L.
,
Chen
,
G.
,
Qiao
,
J.
,
Lin
,
X.
, and
Wu
,
G.
,
2016
, “
The Tribological Behavior Evolution of TiB2/Al Composites From Running-in Stage to Steady Stage
,”
Wear
,
368–369
, pp.
304
313
. 10.1016/j.wear.2016.10.003
6.
Zhang
,
J.
, and
Alpas
,
A. T.
,
1993
, “
Wear Regimes and Transitions in Al2O3 Particulate-Reinforced Aluminum Alloys
,”
Mater. Sci. Eng. A
,
161
(
2
), pp.
273
284
. 10.1016/0921-5093(93)90522-G
7.
Tjong
,
S. C.
, and
Lau
,
K. C.
,
1999
, “
Properties and Abrasive Wear of TiB2/Al-4%Cu Composites Produced by hot Isostatic Pressing
,”
Compos. Sci. Technol.
,
59
(
13
), pp.
2005
2013
. 10.1016/S0266-3538(99)00056-1
8.
Mandal
,
A.
,
Chakraborty
,
M.
, and
Murty
,
B. S.
,
2007
, “
Effect of TiB2 Particles on Sliding Wear Behaviour of Al–4Cu Alloy
,”
Wear
,
262
(
1–2
), pp.
160
166
. 10.1016/j.wear.2006.04.003
9.
AlMangour
,
B.
,
Grzesiak
,
D.
, and
Yang
,
J.-M.
,
2016
, “
Rapid Fabrication of Bulk-Form TiB2/316L Stainless Steel Nanocomposites with Novel Reinforcement Architecture and Improved Performance by Selective Laser Melting
,”
J. Alloy. Compd.
,
680
, pp.
480
493
. 10.1016/j.jallcom.2016.04.156
10.
Debroy
,
T.
,
Wei
,
H. L.
,
Zuback
,
J. S.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2017
, “
Additive Manufacturing of Metallic Components—Process, Structure and Properties
,”
Progress Mater. Sci.
,
92
, pp.
112
224
. 10.1016/j.pmatsci.2017.10.001
11.
Lin
,
X.
, and
Huang
,
W.
,
2015
, “
High Performance Metal Additive Manufacturing Technology Applied in Aviation Field
,”
Mater. China
,
34
(
9
), pp.
684
688
. 10.7502/j.issn.1674-3962.2015.09.06
12.
Yang
,
G.
,
Xin
,
L.
,
Liu
,
F.
,
Qiao
,
H.
, and
Huang
,
W.
,
2012
, “
Laser Solid Forming Zr-Based Bulk Metallic Glass
,”
Intermetallics
,
22
, pp.
110
115
. 10.1016/j.intermet.2011.10.008
13.
Li
,
X. P.
,
Ji
,
G.
,
Chen
,
Z.
,
Addad
,
A.
,
Wu
,
Y.
,
Wang
,
H. W.
,
Vleugels
,
J.
,
Van Humbeeck
,
J.
, and
Kruth
,
J. P.
,
2017
, “
Selective Laser Melting of Nano-TiB 2 Decorated AlSi10Mg Alloy with High Fracture Strength and Ductility
,”
Acta Mater.
,
129
, pp.
183
193
. 10.1016/j.actamat.2017.02.062
14.
Brandl
,
E.
,
Heckenberger
,
U.
,
Holzinger
,
V.
, and
Buchbinder
,
D.
,
2012
, “
Additive Manufactured AlSi10Mg Samples Using Selective Laser Melting (SLM): Microstructure, High Cycle Fatigue, and Fracture Behavior
,”
Mater. Des.
,
34
, pp.
159
169
. 10.1016/j.matdes.2011.07.067
15.
Li
,
X. P.
,
Wang
,
X. J.
,
Saunders
,
M.
,
Suvorova
,
A.
,
Zhang
,
L. C.
,
Liu
,
Y. J.
,
Fang
,
M. H.
,
Huang
,
Z. H.
, and
Sercombe
,
T. B.
,
2015
, “
A Selective Laser Melting and Solution Heat Treatment Refined Al–12Si Alloy with a Controllable Ultrafine Eutectic Microstructure and 25% Tensile Ductility
,”
Acta Mater.
,
95
, pp.
74
82
. 10.1016/j.actamat.2015.05.017
16.
Lee
,
C. S.
,
Kim
,
Y. H.
,
Han
,
K. S.
, and
Lim
,
T.
,
1992
, “
Wear Behaviour of Aluminium Matrix Composite Materials
,”
J. Mater. Sci.
,
27
(
3
), pp.
793
800
. 10.1007/BF02403898
17.
Tjong
,
S. C.
,
Wu
,
S. Q.
, and
Liao
,
H. C.
,
1998
, “
Wear Behaviour of an Al-12% Si Alloy Reinforced with a low Volume Fraction of SiC Particles
,”
Compos. Sci. Technol.
,
57
(
12
), pp.
1551
1558
. 10.1016/S0266-3538(97)00074-2
18.
Balcı
,
Ö
,
Ağaoğulları
,
D.
,
Gökçe
,
H.
,
Duman
,
İ
, and
Öveçoğlu
,
M. L.
,
2014
, “
Influence of TiB2 Particle Size on the Microstructure and Properties of Al Matrix Composites Prepared via Mechanical Alloying and Pressureless Sintering
,”
J. Alloy. Compd.
,
586
(
S1
), pp.
S78
S84
. 10.1016/j.jallcom.2013.03.007
19.
Wen
,
X.
,
Wang
,
Q.
,
Mu
,
Q.
,
Kang
,
N.
,
Sui
,
S.
,
Yang
,
H.
,
Lin
,
X.
, and
Huang
,
W.
,
2019
, “
Laser Solid Forming Additive Manufacturing TiB2 Reinforced 2024Al Composite: Microstructure and Mechanical Properties
,”
Mater. Sci. Eng. A
,
745
, pp.
319
325
. 10.1016/j.msea.2018.12.072
20.
Yang
,
Y.
,
Zhu
,
Y.
, and
Yang
,
H.
,
2020
, “
Enhancing Wear Resistance of Selective Laser Melted Parts: Influence of Energy Density
,”
ASME J. Tribol.
,
142
(
11
), p.
111701
. 10.1115/1.4047297
21.
Yang
,
Y.
,
Zhu
,
Y.
,
Khonsari
,
M. M.
, and
Yang
,
H.
,
2019
, “
Wear Anisotropy of Selective Laser Melted 316L Stainless Steel
,”
Wear
,
428–429
, pp.
376
386
. 10.1016/j.wear.2019.04.001
22.
Dey
,
S. K.
,
Perryb
,
T. A.
, and
Alpas
,
A. T.
,
2009
, “
Micromechanisms of low Load Wear in an Al–18.5% Si Alloy
,”
Wear
,
267
(
1
), pp.
515
524
. 10.1016/j.wear.2008.11.011
23.
Wang
,
J.
,
Horsfield
,
A.
,
Schwingenschlögl
,
U.
, and
Lee
,
P. D.
,
2010
, “
Heterogeneous Nucleation of Solid Al From the Melt by TiB 2 and Al 3 Ti: An ab Initio Molecular Dynamics Study
,”
Phys. Rev. B
,
82
(
18
), pp.
557
557
. 10.1103/PhysRevB.82.144203
24.
Kang
,
N.
,
Coddet
,
P.
,
Liao
,
H.
,
Baur
,
T.
, and
Coddet
,
C.
,
2016
, “
Wear Behavior and Microstructure of Hypereutectic Al-Si Alloys Prepared by Selective Laser Melting
,”
Appl. Surf. Sci.
,
378
, pp.
142
149
. 10.1016/j.apsusc.2016.03.221
25.
Kumar
,
S.
,
Sarma
,
V. S.
, and
Murty
,
B. S.
,
2007
, “
Influence of in Situ Formed TiB 2 Particles on the Abrasive Wear Behaviour of Al–4Cu Alloy
,”
Mater. Sci. Eng. A
,
465
(
1
), pp.
160
164
. 10.1016/j.msea.2007.02.117
26.
Zhu
,
Y.
,
Zou
,
J.
,
Chen
,
X.
, and
Yang
,
H.
,
2016
, “
Tribology of Selective Laser Melting Processed Parts: Stainless Steel 316L Under Lubricated Conditions
,”
Wear
,
350–351
, pp.
46
55
. 10.1016/j.wear.2016.01.004
27.
Chi
,
H.
,
Jiang
,
L.
,
Chen
,
G.
,
Kang
,
P.
,
Lin
,
X.
, and
Wu
,
G.
,
2015
, “
Dry Sliding Friction and Wear Behavior of (TiB2+h-BN)/2024Al Composites
,”
Mater. Des.
,
87
, pp.
960
968
. 10.1016/j.matdes.2015.08.088
28.
Kang
,
N.
,
Coddet
,
P.
,
Chen
,
C.
,
Wang
,
Y.
,
Liao
,
H.
, and
Coddet
,
C.
,
2016
, “
Microstructure and Wear Behavior of in-Situ Hypereutectic Al–High Si Alloys Produced by Selective Laser Melting
,”
Mater. Des.
,
99
, pp.
120
126
. 10.1016/j.matdes.2016.03.053
29.
Alpas
,
A. T.
, and
Zhang
,
J.
,
1994
, “
Effect of Microstructure (Particulate Size and Volume Fraction) and Counterface Material on the Sliding Wear Resistance of Particulate-Reinforced Aluminum Matrix Composites
,”
Metall. Mater. Trans. A
,
25
(
5
), pp.
969
983
. 10.1007/BF02652272
30.
Zhang
,
J.
,
Zheng
,
L.
,
Guo
,
X.
, and
Vincent
,
J.
,
2013
, “
Residual Stresses Comparison Determined by Short-Wavelength X-Ray Diffraction and Neutron Diffraction for 7075 Aluminum Alloy
,”
J. Nondestr. Eval.
,
33
(
1
), pp.
82
92
. 10.1007/s10921-013-0205-9
31.
Zhang
,
Z.
,
Zhang
,
L.
, and
Mai
,
Y.
,
1995
, “
Wear of Ceramic Particle-Reinforced Metal-Matrix Composites
,”
J. Mater. Sci.
,
30
(
8
), pp.
1961
1966
. 10.1007/BF00353018
32.
Zhu
,
Y.
,
Chen
,
X.
,
Zou
,
J.
, and
Yang
,
H.
,
2016
, “
Sliding Wear of Selective Laser Melting Processed Ti6Al4 V Under Boundary Lubrication Conditions
,”
Wear
,
368–369
, pp.
485
495
. 10.1016/j.wear.2016.09.020
33.
Schaffer
,
P. L.
,
Miller
,
D. N.
, and
Dahle
,
A. K.
,
2007
, “
Crystallography of Engulfed and Pushed TiB2 Particles in Aluminium
,”
Scr. Mater.
,
57
(
12
), pp.
1129
1132
. 10.1016/j.scriptamat.2007.08.009
You do not currently have access to this content.