Abstract

Traditional analysis of journal bearings assumed a constant viscosity which simplified the solutions for static and dynamic characteristics and responses. Today's high-performance machinery requires more accurate models wherein temperature and viscosity distributions in the film must be calculated. Thermal effects in journal bearings have a strong influence on both static and dynamic properties, and consequently play a critical role in determining rotor-bearing system performance. This paper presents an extensive survey of the thermal modeling methods and effects in journal bearings. The subjects include various bearing types, and recent progress in thermal bearing design and thermal instability problems observed in fluid and gas film hydrodynamic bearings. The extent of the survey ranges from conventional Reynolds equation models to more advanced computational fluid dynamics models.

References

References
1.
Knight
,
J. D.
, and
Niewiarowski
,
A. J.
,
1990
, “
Effects of Two Film Rupture Models on the Thermal Analysis of a Journal Bearing
,”
ASME J. Tribol.
,
112
(
2
), pp.
183
188
. 10.1115/1.2920240
2.
Taniguchi
,
S.
,
Makino
,
T.
,
Takeshita
,
K.
, and
Ichimura
,
T.
,
1990
, “
A Thermohydrodynamic Analysis of Large Tilting-Pad Journal Bearing in Laminar and Turbulent Flow Regimes With Mixing
,”
ASME J. Tribol.
,
112
(
3
), pp.
542
548
. 10.1115/1.2920291
3.
Knight
,
J. D.
, and
Ghadimi
,
P.
,
1992
, “
Effects of Modified Effective Length Models of the Rupture Zone on the Analysis of a Fluid Journal Bearing
,”
STLE Tribol. Trans.
,
35
(
1
), pp.
29
36
. 10.1080/10402009208982085
4.
Simmons
,
J. E. L.
, and
Dixon
,
S. J.
,
1994
, “
Effect of Load Direction, Preload, Clearance Ratio and Oil Flow on the Performance of a 200mm Journal Pad Bearing
,”
STLE Tribol. Trans.
,
37
(
2
), pp.
227
236
. 10.1080/10402009408983287
5.
Kim
,
J.
,
Palazzolo
,
A. B.
, and
Gadangi
,
R. K.
,
1994
, “
TEHD Analysis for Tilting Pad Journal Bearings Using Upwind Finite Element Method
,”
Tribol. Trans.
,
37
(
4
), pp.
771
783
. 10.1080/10402009408983359
6.
Suh
,
J.
, and
Palazzolo
,
A.
,
2015
, “
Three-Dimensional Dynamic Model of TEHD Tilting-Pad Journal Bearing—Part I: Theoretical Modeling
,”
ASME J. Tribol.
,
137
(
4
), p.
041703
. 10.1115/1.4030020
7.
Ettles
,
C.
,
1969
, “
Hot Oil Carry-Over in Thrust Bearings
,”
Proc. Instin. Mech. Eng. Conf. Proc.
,
184
(
12
), pp.
75
81
. 10.1243/pime_conf_1969_184_373_02
8.
Mitsui
,
J.
,
Hori
,
Y.
, and
Tanaka
,
M.
,
1983
, “
Thermohydrodynamic Analysis of Cooling Effect of Supply Oil in Circular Journal Bearings
,”
ASME J. Tribol.
,
105
(
3
), pp.
414
421
. 10.1115/1.3254629
9.
Kim
,
J.
,
Palazzolo
,
A.
, and
Gadangi
,
R.
,
1995
, “
Dynamic Characteristics of TEHD Tilt Pad Journal Bearing Simulation Including Multiple Mode Pad Flexibility Model
,”
ASME J. Vib. Acoust.
,
117
(
1
), pp.
123
135
. 10.1115/1.2873856
10.
Gadangi
,
R. K.
, and
Palazzolo
,
A. B.
,
1995
, “
Transient Analysis of Tilt Pad Journal Bearings Including Effects of Pad Flexibility and Fluid Film Temperature
,”
ASME J. Tribol.
,
117
(
2
), pp.
302
307
. 10.1115/1.2831247
11.
Desbordes
,
H.
,
Fillon
,
M.
,
Frêne
,
J.
, and
Chan Hew Wai
,
C.
,
1995
, “
The Effects of Three-Dimensional Pad Deformations on Tilting-Pad Journal Bearings Under Dynamic Loading
,”
ASME J. Tribol.
,
117
(
3
), pp.
379
384
. 10.1115/1.2831262
12.
Fillon
,
M.
,
Desbordes
,
H.
,
Frêne
,
J.
, and
Chan Hew Wai
,
C.
,
1996
, “
A Global Approach of Thermal Effects Including Pad Deformations in Tilting-Pad Journal Bearings Submitted to Unbalance Load
,”
ASME J. Tribol.
,
118
(
1
), pp.
169
174
. 10.1115/1.2837074
13.
Gadangi
,
R. K.
,
Palazzolo
,
A. B.
, and
Kim
,
J.
,
1996
, “
Transient Analysis of Plain and Tilt Pad Journal Bearings Including Fluid Film Temperature Effects
,”
ASME J. Tribol.
,
118
(
2
), pp.
423
430
. 10.1115/1.2831319
14.
Monmousseau
,
P.
, and
Fillon
,
M.
,
1999
, “
Frequency Effects on the TEHD Behavior of a Tilting-Pad Journal Bearing Under Dynamic Loading
,”
ASME J. Tribol.
,
121
(
2
), pp.
321
326
. 10.1115/1.2833939
15.
Gandjalikhan Nassab
,
S. A.
, and
Maoyeri
,
M. S.
,
2002
, “
Three-dimensional Thermohydrodynamic Analysis of Axially Grooved Journal Bearings
,”
Proc. Inst. Mech. Eng., Part J
,
216
(
1
), pp.
35
47
. 10.1243/1350650021543870
16.
Nicholas
,
J. C.
,
2003
, “
Tilting Pad Bearings With Spray-Bar Blockers and By-Pass Cooling for High Speed, High Load Applications
,”
Proceedings of 32rd Turbomachinery Symposium
,
Texas A&M University
, pp.
27
37
.
17.
He
,
M.
,
Allaire
,
P.
,
Cloud
,
C. H.
, and
Nicholas
,
J.
,
2004
, “
A Pressure Dam Bearing Analysis With Adiabatic Thermal Effects
,”
Tribol. Trans.
,
47
(
1
), pp.
70
76
. 10.1080/05698190490279001
18.
Fatu
,
A.
,
Hajjam
,
M.
, and
Bonneau
,
D.
,
2005
, “
A New Model of Thermoelastohydrodynamic Lubrication in Dynamically Loaded Journal Bearings
,”
ASME J. Tribol.
,
128
(
1
), pp.
85
95
. 10.1115/1.2114932
19.
Brito
,
F. P.
,
Miranda
,
A. S.
,
Bouyer
,
J.
, and
Fillon
,
M.
,
2006
, “
Experimental Investigation of the Influence of Supply Temperature and Supply Pressure on the Performance of a Two-Axial Groove Hydrodynamic Journal Bearing
,”
ASME J. Tribol.
,
129
(
1
), pp.
98
105
. 10.1115/1.2401206
20.
Liu
,
D.
,
Zhang
,
W.
, and
Zheng
,
T.
,
2007
, “
A Simplified One-Dimensional Thermal Model for Journal Bearings
,”
ASME J. Tribol.
,
130
(
1
), p.
011003
. 10.1115/1.2805427
21.
Sim
,
K.
, and
Kim
,
D.
,
2008
, “
Thermohydrodynamic Analysis of Compliant Flexure Pivot Tilting Pad Gas Bearings
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
032502
. 10.1115/1.2836616
22.
Bang
,
K. B.
,
Kim
,
J. H.
, and
Cho
,
Y. J.
,
2010
, “
Comparison of Power Loss and Pad Temperature for Leading Edge Groove Tilting Pad Journal Bearings and Conventional Tilting Pad Journal Bearings
,”
Tribol. Int.
,
43
(
8
), pp.
1287
1293
. 10.1016/j.triboint.2009.12.002
23.
Chauhan
,
A.
,
Sehgal
,
R.
, and
Sharma
,
R. K.
,
2011
, “
Investigations on the Thermal Effects in Non-Circular Journal Bearings
,”
Tribol. Int.
,
44
(
12
), pp.
1765
1773
. 10.1016/j.triboint.2011.06.028
24.
Solghar
,
A. A.
,
Brito
,
F. P.
,
Claro
,
J. C. P.
, and
Nassab
,
S. A. G.
,
2011
, “
An Experimental Study of the Influence of Loading Direction on the Thermohydrodynamic Behavior of Twin Axial Grooves Journal Bearings
,”
J. Eng. Tribol.
,
225
(
5
), pp.
245
254
. 10.1177/1350650111401970
25.
Thorat
,
M. R.
,
Pettinato
,
B. C.
, and
De Choudhury
,
P.
,
2014
, “
Metal Temperature Correlations in Tilting Pad Journal Bearings
,”
ASME J. Eng. Gas Turbines Power
,
136
(
11
), p.
112503
. 10.1115/1.4027416
26.
Tschoepe
,
D. P.
, and
Childs
,
D. W.
,
2014
, “
Measurements Versus Predictions for the Static and Dynamic Characteristics of a Four-Pad, Rocker-Pivot, Tilting-Pad Journal Bearing
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
052501
. 10.1115/1.4026301
27.
Suh
,
J.
, and
Palazzolo
,
A.
,
2015
, “
Three-Dimensional Dynamic Model of TEHD Tilting-Pad Journal Bearing—Part II: Parametric Studies
,”
ASME J. Tribol.
,
137
(
4
), p.
041704
. 10.1115/1.4030021
28.
Zhang
,
F.
,
Ouyang
,
W.
,
Hong
,
H.
,
Guan
,
Y.
,
Yuan
,
X.
, and
Dong
,
G.
,
2015
, “
Experimental Study on Pad Temperature and Film Thickness of Tilting-Pad Journal Bearings With an Elastic-Pivot Pad
,”
Tribol. Int.
,
88
, pp.
228
235
. 10.1016/j.triboint.2015.03.030
29.
Kuznetsov
,
E.
, and
Glavatskih
,
S.
,
2016
, “
Dynamic Characteristics of Compliant Journal Bearings Considering Thermal Effects
,”
Tribol. Int.
,
94
, pp.
288
305
. 10.1016/j.triboint.2015.08.018
30.
Li
,
H.
,
Yin
,
Z.
, and
Wang
,
Y.
,
2019
, “
Study on the Performance of Journal Bearings in Different Lubricants by CFD and FSI Method With Thermal Effect and Cavitation
,”
MATEC Web of Conferences
,
Orlando, FL
,
Oct. 13–15, 2018
.
31.
Mo
,
J.
,
Gu
,
C.
,
Pan
,
X.
,
Zheng
,
S.
, and
Ying
,
G.
,
2017
, “
A Thermohydrodynamic Analysis of the Self-Lubricating Bearings Applied in Gear Pumps Using Computational Fluid Dynamics Method
,”
ASME J. Tribol.
,
140
(
1
), p.
011102
. 10.1115/1.4036835
32.
Nichols
,
B. R.
,
Fittro
,
R. L.
, and
Goyne
,
C. P.
,
2018
, “
Steady-State Tilting-Pad Bearing Performance Under Reduced Oil Supply Flow Rates
,”
ASME J. Tribol.
,
140
(
5
), p.
051701
. 10.1115/1.4039408
33.
Bouyer
,
J.
,
Fillon
,
M.
,
Helene
,
M.
,
Beaurain
,
J.
, and
Giraudeau
,
C.
,
2018
, “
Behavior of a Two-Lobe Journal Bearing With a Scratched Shaft: Comparison Between Theory and Experiment
,”
ASME J. Tribol.
,
141
(
2
), p.
021702
. 10.1115/1.4041363
34.
Bouyer
,
J.
, and
Fillon
,
M.
,
2001
, “
An Experimental Analysis of Misalignment Effects on Hydrodynamic Plain Journal Bearing Performances
,”
ASME J. Tribol.
,
124
(
2
), pp.
313
319
. 10.1115/1.1402180
35.
El-Butch
,
A. M.
, and
Ashour
,
N. M.
,
2005
, “
Transient Analysis of Misaligned Elastic Tilting Pad Journal Bearing
,”
Tribol. Int.
,
38
(
1
), pp.
41
48
. 10.1016/j.triboint.2004.05.008
36.
Jang
,
J. Y.
, and
Khonsari
,
M. M.
,
2009
, “
On the Behavior of Misaligned Journal Bearings Based on Mass-Conservative Thermohydrodynamic Analysis
,”
ASME J. Tribol.
,
132
(
1
), p.
011702
. 10.1115/1.4000280
37.
Sun
,
J.
,
Deng
,
M.
,
Fu
,
Y.
, and
Gui
,
C.
,
2009
, “
Thermohydrodynamic Lubrication Analysis of Misaligned Plain Journal Bearing With Rough Surface
,”
ASME J. Tribol.
,
132
(
1
), p.
011704
. 10.1115/1.4000515
38.
Suh
,
J.
, and
Choi
,
Y.-S.
,
2016
, “
Pivot Design and Angular Misalignment Effects on Tilting Pad Journal Bearing Characteristics: Four Pads for Load on Pad Configuration
,”
Tribol. Int.
,
102
, pp.
580
599
. 10.1016/j.triboint.2016.05.049
39.
Yang
,
P.
,
Yuan
,
Q.
, and
Chen
,
R.
,
2018
, “
Experimental Research on the Tilting Pad Bearing Under the High Temperature of Inlet Oil
,”
Ind. Lubr. Tribol.
,
70
(
6
), pp.
935
941
. 10.1108/ILT-01-2017-0021
40.
Abdollahi
,
B.
, and
San Andrés
,
L.
,
2018
, “
Improved Estimation of Bearing Pads’ Inlet Temperature: A Model for Lubricant Mixing at Oil Feed Ports and Validation Against Test Data
,”
ASME J. Tribol.
,
141
(
3
), p.
031703
. 10.1115/1.4041720
41.
Hagemann
,
T.
, and
Schwarze
,
H.
,
2018
, “
A Model for Oil Flow and Fluid Temperature Inlet Mixing in Hydrodynamic Journal Bearings
,”
ASME J. Tribol.
,
141
(
2
), p.
021701
. 10.1115/1.4041211
42.
Hagemann
,
T.
,
Zeh
,
C.
, and
Schwarze
,
H.
,
2019
, “
Heat Convection Coefficients of a Tilting-pad Journal Bearing With Directed Lubrication
,”
Tribol. Int.
,
136
, pp.
114
126
. 10.1016/j.triboint.2019.03.035
43.
Yang
,
J.
, and
Palazzolo
,
A.
,
2019
, “
Three-Dimensional Thermo-Elasto-Hydrodynamic Computational Fluid Dynamics Model of a Tilting Pad Journal Bearing—Part I: Static Response
,”
ASME J. Tribol.
,
141
(
6
), p.
061702
. 10.1115/1.4043349
44.
Yang
,
J.
, and
Palazzolo
,
A.
,
2019
, “
Three-Dimensional Thermo-Elasto-Hydrodynamic Computational Fluid Dynamics Model of a Tilting Pad Journal Bearing—Part II: Dynamic Response
,”
ASME J. Tribol.
,
141
(
6
), p.
061703
. 10.1115/1.4043350
45.
Morton
,
P. G.
,
1975
, “
Some Aspects of Thermal Instability in Generators
,” G.E.C. Internal Report No. S/W40 u183.
46.
Hesseborn
,
B.
,
1978
, “
Measurements of Temperature Unsymmetries in Bearing Journal Due to Vibration
,” Internal Report ABB Stal.
47.
Dimarogonas
,
A.
,
1974
, “
A Study of the Newkirk Effect in Turbomachinery
,”
Wear
,
28
(
3
), pp.
369
382
. 10.1016/0043-1648(74)90193-8
48.
Kellenberger
,
W.
,
1980
, “
Spiral Vibrations Due to the Seal Rings in Turbogenerators Thermally Induced Interaction Between Rotor and Stator
,”
ASME J. Mech. Des.
,
102
(
1
), pp.
177
184
. 10.1115/1.3254710
49.
Newkirk
,
B.
,
1927
, “
Shaft Rubbing
,”
J. Am. Soc. Nav. Eng.
,
39
(
1
), pp.
114
120
. 10.1111/j.1559-3584.1927.tb04982.x
50.
Schmied
,
J.
,
1987
, “Spiral Vibrations of Rotors,”
Rotating Machinery Dynamics
,
A.
Muszynska
, and
J. C.
Simonis
, eds., Vol.
2
,
ASME
,
New York
.
51.
Standard
,
A.
,
2005
,
Tutorial on Rotordynamics: Lateral Critical, Unbalance Response, Stability, Train Torsional and Rotor Balancing
, 2nd ed.,
American Petroleum Institute
,
Washington, DC
,
684
.
52.
de Jongh
,
F.
,
2008
, “
The Synchronous Rotor Instability Phenomenon—Morton Effect
,”
37th Turbomachinery Symposium
,
Houston, TX
,
Sept. 8–11
, pp.
159
167
.
53.
Gu
,
L.
,
2018
, “
A Review of Morton Effect: From Theory to Industrial Practice
,”
Tribol. Trans.
,
61
(
2
), pp.
381
391
. 10.1080/10402004.2017.1333663
54.
Tong
,
X.
,
Palazzolo
,
A.
, and
Suh
,
J.
,
2017
, “
A Review of the Rotordynamic Thermally Induced Synchronous Instability (Morton) Effect
,”
ASME Appl. Mech. Rev.
,
69
(
6
), p.
060801
. 10.1115/1.4037216
55.
de Jongh
,
F.
, and
Van Der Hoeven
,
P.
,
1998
, “
Application of a Heat Barrier Sleeve to Prevent Synchronous Rotor Instability
,”
27th Turbomachinery Symposium
,
Houston, TX
,
Sept. 20–24
, pp.
17
26
.
56.
Schmied
,
J.
,
Pozivil
,
J.
, and
Walch
,
J.
,
2008
, “
Hot Spots in Turboexpander Bearings: Case History, Stability Analysis, Measurements and Operational Experience
,”
ASME
Paper No. GT2008-51179
. 10.1115/gt2008-51179
57.
Marscher
,
W.
, and
Illis
,
B.
,
2007
, “
Journal Bearing Morton Effect Cause of Cyclic Vibration in Compressors
,”
Tribol. Trans.
,
50
(
1
), pp.
104
113
. 10.1080/10402000601147781
58.
Berot
,
F.
, and
Dourlens
,
H.
,
1999
, “
On Instability of Overhung Centrifugal Compressors
,”
ASME Paper No. 99-GT-202
.
59.
de Jongh
,
F.
, and
Morton
,
P.
,
1994
, “
The Synchronous Instability of a Compressor Rotor Due to Bearing Journal Differential Heating
,”
ASME
Paper No. 94-GT-035
. 10.1115/94-gt-035
60.
Kocur
,
J.
, and
de Jongh
,
F.
,
2000
, “
Thermal Rotor Instability in Gas Compressors
,”
14th International Gas Convention
,
Caracas, Venezuela
,
May 10–12
, pp.
1
14
.
61.
Corcoran
,
J.
,
Rea
,
H.
,
Cornejo
,
G.
, and
Leonhard
,
M.
,
1997
, “
Discovering, the Hard Way, How a High Performance Coupling Influenced the Critical Speeds and Bearing Loading of an Overhung Radial Compressor—A Case History
,”
26th Turbomachinery Symposium
,
Houston, TX
,
Sept.
, pp.
67
78
.
62.
Kirk
,
G.
,
Guo
,
Z.
, and
Balbahadur
,
A.
,
2003
, “
Synchronous Thermal Instability Prediction for Overhung Rotors
,”
32nd Turbomachinery Symposium
,
Houston, TX
,
Sept. 8–11
, pp.
121
135
.
63.
Kirk
,
G.
, and
Guo
,
Z.
,
2013
, “
Design Tool for Prediction of Thermal Synchronous Instability
,”
ASME Paper No. DETC2013-12966
.
64.
Tong
,
X.
, and
Palazzolo
,
A.
,
2016
, “
Double Overhung Disk and Parameter Effect on Rotordynamic Synchronous Instability—Morton Effect—Part I: Theory and Modeling Approach
,”
ASME J. Tribol.
,
139
(
1
), p.
011705
. 10.1115/1.4033888
65.
Childs
,
D.
, and
Saha
,
R.
,
2012
, “
A New, Iterative, Synchronous-Response Algorithm for Analyzing the Morton Effect
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
072501
. 10.1115/1.4005973
66.
Faulkner
,
H.
,
Strong
,
W.
, and
Kirk
,
R.
,
1997
, “
Thermally Induced Synchronous Instability of a Radial Inflow Overhung Turbine—Part II
,”
ASME Design Engineering Technical Conference
,
Sacramento, CA
,
Sept. 14–17
,
Paper No. DETC97/VIB-4174
.
67.
Lorenz
,
J.
, and
Murphy
,
B.
,
2011
, “
Case Study of Morton Effect Shaft Differential Heating in a Variable-Speed Rotating Electric Machine
,”
ASME
Paper No. GT2011-45228
. 10.1115/gt2011-45228
68.
Suh
,
J.
, and
Palazzolo
,
A.
,
2014
, “
Three-Dimensional Thermohydrodynamic Morton Effect Analysis—Part II: Parametric Studies
,”
ASME J. Tribol.
,
136
(
3
), p.
031707
. 10.1115/1.4027310
69.
Balbahadur
,
A.
,
2001
, “
A Thermoelastohydrodynamic Model of the Morton Effect Operating in Overhung Rotors Supported by Plain or Tilting Pad Journal Bearings
,”
Ph.D. thesis
,
Virginia Tech
,
Blacksburg, VA
.
70.
Panara
,
D.
,
Panconi
,
S.
, and
Griffini
,
D.
,
2015
, “
Numerical Prediction and Experimental Validation of Rotor Thermal Instability
,”
44th Turbomachinery Symposium
,
Houston, TX
,
Sept. 14–17
.
71.
Tong
,
X.
, and
Palazzolo
,
A.
,
2017
, “
Measurement and Prediction of the Journal Circumferential Temperature Distribution for the Rotordynamic Morton Effect
,”
ASME J. Tribol.
,
140
(
3
), p.
031702
. 10.1115/1.4038104
72.
Keogh
,
P.
, and
Morton
,
P.
,
1993
, “
Journal Bearing Differential Heating Evaluation With Influence on Rotor Dynamic Behaviour
,”
Proc. R. Soc. London, Ser. A
,
441
(
1913
), pp.
527
548
. 10.1098/rspa.1993.0077
73.
Keogh
,
P.
, and
Morton
,
P.
,
1994
, “
The Dynamic Nature of Rotor Thermal Bending Due to Unsteady Lubricant Shearing Within a Bearing
,”
Proc. R. Soc. London, Ser. A
,
445
(
1924
), pp.
273
290
. 10.1098/rspa.1994.0061
74.
Larsson
,
B.
,
1999
, “
Journal Asymmetric Heating—Part I: Nonstationary Bow
,”
ASME J. Tribol.
,
121
(
1
), pp.
157
163
. 10.1115/1.2833797
75.
Larsson
,
B.
,
1999
, “
Journal Asymmetric Heating—Part II: Alteration of Rotor Dynamic Properties
,”
ASME J. Tribol.
,
121
(
1
), pp.
164
168
. 10.1115/1.2833798
76.
Tucker
,
P.
, and
Keogh
,
P.
,
1996
, “
On the Dynamic Thermal State in a Hydrodynamic Bearing With a Whirling Journal Using CFD Techniques
,”
ASME J. Tribol.
,
118
(
2
), pp.
356
363
. 10.1115/1.2831309
77.
Gomiciaga
,
R.
, and
Keogh
,
P.
,
1999
, “
Orbit Induced Journal Temperature Variation in Hydrodynamic Bearings
,”
ASME J. Tribol.
,
121
(
1
), pp.
77
84
. 10.1115/1.2833814
78.
Murphy
,
B.
, and
Lorenz
,
J.
,
2010
, “
Simplified Morton Effect Analysis for Synchronous Spiral Instability
,”
ASME J. Vib. Acoust.
,
132
(
5
), p.
051008
. 10.1115/1.4001512
79.
Lee
,
J.
, and
Palazzolo
,
A.
,
2012
, “
Morton Effect Cyclic Vibration Amplitude Determination for Tilt Pad Bearing Supported Machinery
,”
ASME J. Tribol.
,
135
(
1
), p.
011701
. 10.1115/1.4007884
80.
Grigor’ev
,
B. S.
,
Fedorov
,
A. E.
, and
Schmied
,
J.
,
2015
, “
New Mathematical Model for the Morton Effect Based on the THD Analysis
,”
Nineth IFToMM International Conference on Rotor Dynamics
,
Milan, Italy
,
Sept. 22–25
, pp.
2243
2253
.
81.
Tong
,
X.
,
Palazzolo
,
A.
, and
Suh
,
J.
,
2016
, “
Rotordynamic Morton Effect Simulation With Transient, Thermal Shaft Bow
,”
ASME J. Tribol.
,
138
(
3
), p.
031705
. 10.1115/1.4032961
82.
Tong
,
X.
, and
Palazzolo
,
A.
,
2016
, “
Double Overhung Disk and Parameter Effect on Rotordynamic Synchronous Instability—Morton Effect—Part II: Occurrence and Prevention
,”
ASME J. Tribol.
,
139
(
1
), p.
011706
. 10.1115/1.4033892
83.
Tong
,
X.
, and
Palazzolo
,
A.
,
2018
, “
Tilting Pad Gas Bearing Induced Thermal Bow-Rotor Instability
,”
Tribol. Int.
,
121
, pp.
269
279
. 10.1016/j.triboint.2018.01.066
84.
Khonsari
,
M.
, and
Beaman
,
J.
,
1986
, “
Thermohydrodynamic Analysis of Laminar Incompressible Journal Bearings
,”
ASLE Trans.
,
29
(
2
), pp.
141
150
. 10.1080/05698198608981671
85.
Knight
,
J. D.
, and
Barrett
,
L. E.
,
1988
, “
Analysis of Tilting Pad Journal Bearings With Heat Transfer Effects
,”
ASME J. Tribol.
,
110
(
1
), pp.
128
133
. 10.1115/1.3261550
86.
Fillon
,
M.
,
Bligoud
,
J.
, and
Frêne
,
J.
,
1992
, “
Experimental Study of Tilting-Pad Journal Bearings—Comparison With Theoretical Thermoelastohydrodynamic Results
,”
ASME J. Tribol.
,
114
(
3
), pp.
579
587
. 10.1115/1.2920920
87.
He
,
M.
,
Allaire
,
P.
,
Barrett
,
L.
, and
Nicholas
,
J.
,
2005
, “
Thermohydrodynamic Modeling of Leading-Edge Groove Bearings Under Starvation Condition
,”
Tribol. Trans.
,
48
(
3
), pp.
362
369
. 10.1080/05698190591008531
88.
Suh
,
J.
, and
Palazzolo
,
A.
,
2014
, “
Three-Dimensional Thermohydrodynamic Morton Effect Simulation—Part I: Theoretical Model
,”
ASME J. Tribol.
,
136
(
3
), p.
031706
. 10.1115/1.4027309
89.
San Andrés
,
L.
,
Ryu
,
K.
, and
Kim
,
T. H.
,
2010
, “
Identification of Structural Stiffness and Energy Dissipation Parameters in a Second Generation Foil Bearing: Effect of Shaft Temperature
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p.
032501
. 10.1115/1.4002317
90.
Salehi
,
M.
, and
Heshmat
,
H.
,
2000
, “
On the Fluid Flow and Thermal Analysis of a Compliant Surface Foil Bearing and Seal
,”
Tribol. Trans.
,
432
(
2
), pp.
318
324
. 10.1080/10402000008982346
91.
Salehi
,
M.
,
Swanson
,
E.
, and
Heshmat
,
H.
,
2000
, “
Thermal Features of Compliant Foil Bearings—Theory and Experiments
,”
ASME J. Tribol.
,
123
(
3
), pp.
566
571
. 10.1115/1.1308038
92.
Kim
,
T. H.
, and
San Andrés
,
L.
,
2009
, “
Thermohydrodynamic Model Predictions and Performance Measurements of Bump-Type Foil Bearing for Oil-Free Turboshaft Engines in Rotorcraft Propulsion Systems
,”
ASME J. Tribol.
,
132
(
1
), p.
011701
. 10.1115/1.4000279
93.
Peng
,
Z.
, and
Khonsari
,
M. M.
,
2006
, “
A Thermohydrodynamic Analysis of Foil Journal Bearings
,”
ASME J. Tribol.
,
128
(
3
), pp.
534
541
. 10.1115/1.2197526
94.
Lee
,
D.
, and
Kim
,
D.
,
2010
, “
Thermohydrodynamic Analyses of Bump Air Foil Bearings With Detailed Thermal Model of Foil Structures and Rotor
,”
ASME J. Tribol.
,
132
(
2
), p.
021704
. 10.1115/1.4001014
95.
Sim
,
K.
, and
Kim
,
T. H.
,
2012
, “
Thermohydrodynamic Analysis of Bump-Type Gas Foil Bearings Using Bump Thermal Contact and Inlet Flow Mixing Models
,”
Tribol. Int.
,
48
, pp.
137
148
. 10.1016/j.triboint.2011.11.017
96.
Gita
,
T.
, and
Carpino
,
M.
,
2011
, “
Thermal Structural Effects in a Gas-Lubricated Foil Journal Bearing
,”
Tribol. Trans.
,
54
(
5
), pp.
701
713
. 10.1080/10402004.2011.593112
97.
Lehn
,
A.
,
Mahner
,
M.
, and
Schweizer
,
B.
,
2017
, “
A Contribution to the Thermal Modeling of Bump Type Air Foil Bearings: Analysis of the Thermal Resistance of Bump Foils
,”
ASME J. Tribol.
,
139
(
6
), p.
061702
. 10.1115/1.4036631
98.
Paouris
,
L. I.
,
Bompos
,
D. A.
, and
Nikolakopoulos
,
P. G.
,
2013
, “
Simulation of Static Performance of Air Foil Bearings Using Coupled Finite Element and Computational Fluid Dynamics Techniques
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
022503
. 10.1115/1.4025537
99.
Aksoy
,
S.
, and
Aksit
,
M. F.
,
2015
, “
A Fully Coupled 3D Thermo-Elastohydrodynamics Model for a Bump-Type Compliant Foil Journal Bearing
,”
Tribol. Int.
,
82
, pp.
110
122
. 10.1016/j.triboint.2014.10.001
100.
Lee
,
D.
, and
Kim
,
D.
,
2011
, “
Three-Dimensional Thermohydrodynamic Analyses of Rayleigh Step Air Foil Thrust Bearing With Radially Arranged Bump Foils
,”
Tribol. Trans.
,
54
(
3
), pp.
432
448
. 10.1080/10402004.2011.556314
101.
Gad
,
A. M.
, and
Kaneko
,
S.
,
2015
, “
Tailoring of the Bearing Stiffness to Enhance the Performance of Gas-Lubricated Bump-Type Foil Thrust Bearing
,”
Proc. Inst. Mech. Eng., Part J
,
230
(
5
), pp.
541
560
. 10.1177/1350650115606482
102.
Lehn
,
A.
,
Mahner
,
M.
, and
Schweizer
,
B.
,
2018
, “
A Thermo-Elasto-Hydrodynamic Model for Air Foil Thrust Bearings Including Self-Induced Convective Cooling of the Rotor Disk and Thermal Runaway
,”
Tribol. Int.
,
119
, pp.
281
298
. 10.1016/j.triboint.2017.08.015
103.
Qin
,
K.
,
Peter
,
A. J.
,
Joshua
,
A. K.
,
Li
,
D.
, and
Jahn
,
I.
,
2018
, “
A Fluid-Structure-Thermal Model for Bump-Type Foil Thrust Bearings
,”
Tribol. Int.
,
121
, pp.
481
491
. 10.1016/j.triboint.2018.02.008
104.
Feng
,
K.
,
Li
,
W.
,
Deng
,
Z.
, and
Zhang
,
M.
,
2017
, “
Thermohydrodynamic Analysis and Thermal Management of Spherical Spiral Groove gas Bearings
,”
Tribol. Trans.
,
60
(
4
), pp.
629
644
. 10.1080/10402004.2016.1195467
105.
Zhang
,
K.
,
Zhao
,
X.
,
Feng
,
K.
, and
Zhao
,
Z.
,
2018
, “
Thermohydrodynamic Analysis and Thermal Management of Hybrid Bump–Metal Mesh Foil Bearings: Experimental Tests and Theoretical Predictions
,”
Int. J. Therm. Sci.
,
127
, pp.
91
104
. 10.1016/j.ijthermalsci.2018.01.018
106.
Feng
,
K.
, and
Kaneko
,
S.
,
2009
, “
Thermohydrodynamic Study of Multiwound Foil Bearing Using Lobatto Point Quadrature
,”
ASME J. Tribol.
,
131
(
2
), p.
021702
. 10.1115/1.3070579
107.
Kim
,
D.
,
2015
, “
Design Space of Foil Bearings for Closed-Loop Supercritical CO2 Power Cycles Based on Three-Dimensional Thermohydrodynamic Analyses
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032504
. 10.1115/1.4031433
108.
Chien
,
S.-Y.
,
Cramer
,
M.
, and
Untaroiu
,
A.
,
2017
, “
A Compressible Thermohydrodynamic Analysis of Journal Bearings Lubricated With Supercritical CO2
,”
Proceedings of the ASME 2017 Fluids Engineering Division Summer Meeting. Volume 1B, Symposia: Fluid Measurement and Instrumentation; Fluid Dynamics of Wind Energy; Renewable and Sustainable Energy Conversion; Energy and Process Engineering; Microfluidics and Nanofluidics; Development and Applications in Computational Fluid Dynamics; DNS/LES and Hybrid RANS/LES Methods
,
Waikoloa, HI
,
July 30–Aug. 3
, p.
V01BT09A001
.
109.
Lee
,
D.
,
Kim
,
D.
, and
Sadashiva
,
R. P.
,
2011
, “
Transient Thermal Behavior of Preloaded Three-Pad Foil Bearings: Modeling and Experiments
,”
ASME J. Tribol.
,
133
(
2
), p.
021703
. 10.1115/1.4003561
110.
Samanta
,
P.
, and
Khonsari
,
M. M.
,
2018
, “
On the Thermoelastic Instability of Foil Bearings
,”
Tribol. Int.
,
121
, pp.
10
20
. 10.1016/j.triboint.2018.01.014
111.
DellaCorte
,
C.
,
1998
, “
A New Foil Air Bearing Test Rig for Use to 700 °C and 70,000 rpm
,”
STLE Tribol. Trans.
,
41
(
3
), pp.
335
340
. 10.1080/10402009808983756
112.
DellaCorte
,
C.
,
Valco
,
M. J.
,
Radil
,
K. C.
,
Heshmat
,
H.
, and
Lukaszewicz
,
V. L.
,
2000
, “
Performance and Durability of High Temperature Foil Air Bearings for Oil-Free Turbomachinery
,”
Tribol. Trans.
,
43
(
4
), pp.
774
780
. 10.1080/10402000008982407
113.
Radil
,
K.
, and
Zeszotek
,
M.
,
2004
, “
An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing
,”
Tribol. Trans.
,
47
(
4
), pp.
470
479
. 10.1080/05698190490501995
114.
Zywica
,
G.
,
Baginski
,
P.
, and
Banaszek
,
S.
,
2015
, “
Experimental Studies on Foil Bearing With a Sliding Coating Made of Synthetic Material
,”
ASME J. Tribol.
,
138
(
1
), p.
011301
. 10.1115/1.4031396
115.
Abraham Chirathadam
,
T.
, and
San Andrés
,
L.
,
2013
, “
Measurements of Rotordynamic Response and Temperatures in a Rotor Supported on Metal Mesh Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p.
122507
. 10.1115/1.4025237
116.
Howard
,
S. A.
,
DellaCorte
,
C.
,
Valco
,
M. J.
,
Prahl
,
J. M.
, and
Heshmat
,
H.
,
2001
, “
Steady-State Stiffness of Foil Air Journal Bearings at Elevated Temperatures
,”
Tribol. Trans.
,
44
(
3
), pp.
489
493
. 10.1080/10402000108982486
117.
Howard
,
S.
,
DellaCorte
,
C.
,
Valco
,
M. J.
,
Prahl
,
J. M.
, and
Heshmat
,
H.
,
2001
, “
Dynamic Stiffness and Damping Characteristics of a High-Temperature Air Foil Journal Bearing
,”
Tribol. Trans.
,
44
(
4
), pp.
657
663
. 10.1080/10402000108982507
118.
Kim
,
T. H.
,
Breedlove
,
A. W.
, and
San Andrés
,
L.
,
2009
, “
Characterization of a Foil Bearing Structure at Increasing Temperatures: Static Load and Dynamic Force Performance
,”
ASME J. Tribol.
,
131
(
4
), p.
041703
. 10.1115/1.3195042
119.
Dykas
,
B.
, and
Howard
,
S. A.
,
2004
, “
Journal Design Considerations for Turbomachine Shafts Supported on Foil Air Bearings
,”
STLE Tribol. Trans.
,
47
(
4
), pp.
508
516
. 10.1080/05698190490493391
120.
Ryu
,
K.
, and
Andrés
,
L. S.
,
2012
, “
Effect of Cooling Flow on the Operation of a Hot Rotor-Gas Foil Bearing System
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102511
. 10.1115/1.4007067
121.
Żywica
,
G.
,
Bagiński
,
P.
, and
Kiciński
,
J.
,
2017
, “
Selected Operational Problems of High-Speed Rotors Supported by Gas Foil Bearings
,”
Technische Mechanik
,
37
(
2–5
), pp.
339
346
. https://doi.org/10.24352/UB.OVGU-2017-109
122.
Radil
,
K.
,
Howard
,
S.
, and
Dykas
,
B.
,
2002
, “
The Role of Radial Clearance on the Performance of Foil Air Bearings
,”
STLE Tribol. Trans.
,
454
(
4
), pp.
485
490
. 10.1080/10402000208982578
123.
Radil
,
K.
,
DellaCorte
,
C.
, and
Zeszotek
,
M.
,
2007
, “
Thermal Management Techniques for Oil-Free Turbomachinery Systems
,”
STLE Tribol. Trans.
,
50
(
3
), pp.
319
327
. 10.1080/10402000701413497
124.
Radil
,
K. C.
, and
DellaCorte
,
C.
,
2009
, “
A Three-Dimensional Foil Bearing Performance Map Applied to Oil-Free Turbomachinery
,”
Tribol. Trans.
,
53
(
5
), pp.
771
778
. 10.1080/10402001003797942
125.
Ryu
,
K.
, and
San Andrés
,
L.
,
2013
, “
On the Failure of a Gas Foil Bearing: High Temperature Operation Without Cooling Flow
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
112506
. 10.1115/1.4025079
126.
Sim
,
K.
,
Lee
,
Y.
,
Song
,
J.
, and
Kim
,
T.
,
2018
, “
Effect of Cooling Flow on Thermal Performance of a Gas Foil Bearing Floating on a Hot Rotor
,”
J. Mech. Sci. Technol.
,
32
(
5
), pp.
1939
1954
. 10.1007/s12206-018-0401-8
127.
Guo
,
Z.
,
Toshio
,
H.
, and
Gorden
,
R.
,
2005
, “
Application of CFD Analysis for Rotating Machinery Part 1: Hydrodynamic, Hydrostatic Bearings and Squeeze Film Damper
,”
ASME J. Eng. Gas Turbines Power
,
4
(
2
), pp.
445
451
. 10.1115/1.1807415
128.
Uhkoetter
,
S.
,
aus der Wiesche
,
S.
,
Kursch
,
M.
, and
Beck
,
C.
,
2012
, “
Development and Validation of a Three-Dimensional Multiphase Flow CFD Analysis for Journal Bearings in Steam and Heavy Duty Gas Turbines
,”
Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 7: Structures and Dynamics, Parts A and B
,
Copenhagen, Denmark
.
June 11–15
, pp.
749
758
.
129.
Hagemann
,
T.
,
Zeh
,
C.
,
Pr€olß
,
M.
, and
Schwarze
,
H.
,
2017
, “
The Impact of Convective Fluid Inertia Forces on Operation of Tilting-Pad Journal Bearings
,”
Int. J. Rotating Mach.
,
2017
, pp.
1
12
. 10.1155/2017/5683763
130.
Hagemann
,
T.
,
Pfeiffer
,
P.
, and
Schwarze
,
H.
,
2018
, “
Measured and Predicted Operating Characteristics of a Tilting-Pad Journal Bearing With Jacking-Oil Device at Hydrostatic, Hybrid, and Hydrodynamic Operation
,”
Lubricants
,
6
(
3
), p.
81
. 10.3390/lubricants6030081
131.
Ding
,
A.
,
Ren
,
X.
,
Li
,
X.
, and
Gu
,
C.
,
2018
, “
Numerical Investigation of Turbulence Models for a Superlaminar Journal Bearing
,”
Adv. Tribol.
,
2018
, p.
1
14
. 10.1155/2018/2841303
132.
Heshmat
,
H.
, and
Pinkus
,
O.
,
1989
, “
Workshop on Thermal Aspects of Fluid Film Lubrication—A Summary
,”
ASME J. Tribol.
,
111
(
4
), pp.
567
568
. 10.1115/1.3261978
133.
Tucker
,
P.
, and
Keogh
,
P.
,
1994
, “
A Generalized Computational Fluid Dynamics Approach for Journal Bearing Performance Prediction
,”
Proc. Inst. Mech. Eng., Part J
,
209
(
2
), pp.
99
108
. 10.1243/PIME_PROC_1995_209_412_02
134.
Shenoy
,
B. S.
,
Pai
,
R. S.
,
Rao
,
D. S.
, and
Pai
,
R.
,
2009
, “
Elasto-Hydrodynamic Lubrication Analysis of Full 360° Journal Bearing Using CFD and FSI Techniques
,”
World J. Model. Simul.
,
5
(
4
), pp.
315
320
.
135.
Li
,
Q.
,
Liu
,
S.
,
Pan
,
X.
, and
Zheng
,
S.
,
2012
, “
A New Method for Studying the 3D Transient Flow of Misaligned Journal Bearings in Flexible Rotor-Systems
,”
J. Zhejiang Univ., Sci., A
,
13
(
4
), pp.
293
310
. 10.1631/jzus.A1100228
136.
Lin
,
Q.
,
Wei
,
Z.
,
Wang
,
N.
, and
Chen
,
W.
,
2013
, “
Analysis on the Lubrication Performances of Journal Bearing System Using Computational Fluid Dynamics and Fluid-Structure Interaction Considering Thermal Influence and Cavitation
,”
Tribol. Int.
,
64
, pp.
8
15
. 10.1016/j.triboint.2013.03.001
137.
Song
,
Y.
, and
Gu
,
C.
,
2015
, “
Development and Validation of a Three-Dimensional Computational Fluid Dynamics Analysis for Journal Bearings Considering Cavitation and Conjugate Heat Transfer
,”
ASME J. Eng. Gas Turbines Power
,
137
(
12
), p.
122502
. 10.1115/1.4030633
138.
Edney
,
L. E.
,
Heitland
,
G. B.
, and
Decalmillo
,
S. M.
,
1998
, “
Testing, Analysis, and CFD Modeling of a Profiled Leading Edge Groove Tilting Pad Journal Bearing
,”
1998 ASME TURBO EXPO Conference
,
Stockholm, Sweden
,
June 2–5
,
ASME
Paper No. 98-GT-409
. 10.1115/98-gt-409
139.
Armentrout
,
R. W.
,
He
,
M.
,
Haykin
,
T.
, and
Reed
,
A.
,
2017
, “
Analysis of Turbulence and Convective Inertia in a Water-Lubricated Tilting-Lubricated Tilting-Pad Journal Bearing Using Conventional and CFD Approaches
,”
Tribol. Trans.
,
60
(
6
), pp.
1129
1147
. 10.1080/10402004.2016.1251668
140.
Hagemann
,
T.
, and
Schwarze
,
H.
,
2019
, “
Theoretical and Experimental Analyses of Directly Lubricated Tilting-Pad Journal Bearings With Leading Edge Groove
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p.
051010
. 10.1115/1.4041026
141.
Ding
,
A.
,
Ren
,
X.
,
Li
,
X.
, and
Gu
,
C.
,
2018
, “
Friction Power Analysis and Improvement for a Tilting-Pad Journal Bearing Considering Air Entrainment
,”
Appl. Therm. Eng.
,
145
(
25
), pp.
763
771
. 10.1016/j.applthermaleng.2018.09.080
142.
Li
,
M.
,
Gu
,
C.
,
Pan
,
X.
,
Zheng
,
S.
, and
Li
,
Q.
,
2016
, “
A New Dynamic Mesh Algorithm for Studying the 3D Transient Flow Field of Tilting Pad Journal Bearings
,”
Proc. Inst. Mech. Eng., Part J
,
230
(
12
), pp.
1470
1482
. 10.1177/1350650116638610
143.
Liu
,
H.
,
Xu
,
H.
,
Ellison
,
P. J.
, and
Jin
,
Z.
,
2010
, “
Application of Computational Fluid Dynamics and Fluid-Structure Interaction Method to the Lubrication Study of a Rotor-Bearing System
,”
Tribol. Lett.
,
38
, pp.
324
336
. 10.1007/s11249-010-9612-6
144.
Concli
,
F.
,
2016
, “
Pressure Distribution in Small Hydrodynamic Journal Bearings Considering Cavitation: a Numerical Approach Based on the Opensource CFD Code OpenFOAM®
,”
Lubr. Sci.
,
28
(
6
), pp.
329
347
. 10.1002/ls.1334
145.
Crone
,
P.
,
Almqvist
,
A.
, and
Larsson
,
R.
,
2018
, “
Thermal Turbulent Flow in Leading Edge Grooved and Conventional Tilting Pad Journal Bearing Segments—A Comparative Study
,”
Lubricants
,
6
(
4
), p.
97
. 10.3390/lubricants6040097
146.
Maneshian
,
B.
, and
Gandjalikhan Nassab
,
S. A.
,
2009
, “
Thermohydrodynamic Characteristics of Journal Bearings Running Under Turbulent Condition
,”
Int. J. Eng., Trans. A
,
22
(
2
), pp.
181
194
.
147.
Montazeri
,
H.
,
2008
, “
Numerical Analysis of Hydrodynamic Journal Bearings Lubricated With Ferrofluid
,”
Proc. Inst. Mech. Eng., Part J
,
222
(
1
), pp.
51
60
. 10.1243/13506501JET314
148.
Gertzos
,
K. P.
,
Nikolakopoulos
,
P. G.
, and
Papadopoulos
,
C. A.
,
2008
, “
CFD Analysis of Journal Bearing Hydrodynamic Lubrication by Bingham Lubricant
,”
Tribol. Int.
,
41
(
12
), pp.
1190
1204
. 10.1016/j.triboint.2008.03.002
149.
Gao
,
G.
,
Yin
,
Z.
,
Jiang
,
D.
, and
Zhang
,
X.
,
2013
, “
CFD Analysis of Load-Carrying Capacity of Hydrodynamic Lubrication on a Water-Lubricated Journal Bearing
,”
Ind. Lubr. Tribol.
,
67
(
1
), pp.
30
37
. 10.1108/ilt-03-2013-0028
150.
Gao
,
G.
,
Yin
,
Z.
,
Jiang
,
D.
, and
Zhang
,
X.
,
2014
, “
Numerical Analysis of Plain Journal Bearing Under Hydrodynamic Lubrication by Water
,”
Tribol. Int.
,
75
, pp.
31
38
. 10.1016/j.triboint.2014.03.009
151.
Gao
,
G.
,
Yin
,
Z.
,
Jiang
,
D.
,
Zhang
,
X.
, and
Wang
,
Y.
,
2015
, “
Analysis on Design Parameters of Water-Lubricated Journal Bearings Under Hydrodynamic Lubrication
,”
Proc. Inst. Mech. Eng., Part J
,
230
(
8
), pp.
1019
1029
. 10.1177/1350650115623201
152.
Wang
,
Y.
,
Yin
,
Z.
,
Jiang
,
D.
,
Gao
,
G.
, and
Zhang
,
X.
,
2015
, “
Study of the Lubrication Performance of Water-Lubricated Journal Bearings With CFD and FSI Method
,”
Ind. Lubr. Tribol.
,
68
(
3
), pp.
341
348
. 10.1108/ILT-04-2015-0053
153.
Zhang
,
X.
,
Yinn
,
Z.
,
Jiang
,
D.
,
Gao
,
G.
,
Wang
,
Y.
, and
Wang
,
X.
,
2016
, “
Load Carrying Capacity of Misaligned Hydrodynamic Water-Lubricated Plain Journal Bearings With Rigid Bush Materials
,”
Tribol. Int.
,
99
, pp.
1
13
. 10.1016/j.triboint.2016.02.038
154.
Arghir
,
M.
,
Roucou
,
N.
,
Helene
,
M.
, and
Frene
,
J.
,
2003
, “
Theoretical Analysis of the Incompressible Laminar Flow in a Macro-Roughness Cell
,”
ASME J. Tribol.
,
125
(
2
), pp.
309
318
. 10.1115/1.1506328
155.
Brajdic-Mitidieri
,
P.
,
Gosman
,
A. D.
,
Ioannides
,
E.
, and
Spikes
,
H. A.
,
2005
, “
CFD Analysis of a Low Friction Pocketed Pad Bearing
,”
ASME J. Tribol.
,
127
(
4
), pp.
803
812
. 10.1115/1.2032990
156.
Sahlin
,
F.
,
Glavatskih
,
S. B.
,
Almqvist
,
T.
, and
Larsson
,
R.
,
2005
, “
Two-Dimensional CFD-Analysis of Micro-Patterned Surfaces in Hydrodynamic Lubrication
,”
ASME J. Tribol.
,
127
(
1
), pp.
96
102
. 10.1115/1.1828067
157.
Han
,
J.
,
Fang
,
L.
,
Sun
,
J.
, and
Ge
,
S.
,
2010
, “
Hydrodynamic Lubrication of Microdimple Textured Surface Using Three-Dimensional CFD
,”
Tribol. Trans.
,
53
(
6
), pp.
860
870
. 10.1080/10402004.2010.496070
158.
Liang
,
X.
,
Liu
,
Z.
,
Wang
,
H.
,
Zhou
,
X.
, and
Zhou
,
X.
,
2016
, “
Hydrodynamic Lubrication of Partial Textured Sliding Journal Bearing Based on Three-Dimensional CFD
,”
Ind. Lubr. Tribol.
,
68
(
1
), pp.
106
115
. 10.1108/ILT-04-2015-0055
159.
Fu
,
G.
, and
Untaroiu
,
A.
,
2017
, “
A Study of the Effect of Various Recess Shapes on Hybrid Journal Bearing Performance Using Computational Fluid Dynamics and Response Surface Method
,”
ASME J. Tribol.
,
139
(
6
), p.
061104
. 10.1115/1.4036447
160.
Yang
,
J.
, and
Palazzolo
,
A.
,
2020
, “
Computational Fluid Dynamics Based Mixing Prediction for Tilt Pad Journal Bearing TEHD Modeling—Part I: TEHD-CFD Model Validation and Improvements
,”
ASME J. Tribol.
,
143
(
1
), p.
011801
. 10.1115/1.4047750
161.
Yang
,
J.
, and
Palazzolo
,
A.
,
2020
, “
Computational Fluid Dynamics Based Mixing Prediction for Tilt Pad Journal Bearing TEHD Modeling—Part II: Implementation With Machine Learning
,”
ASME J. Tribol.
,
143
(
1
), p.
011802
. 10.1115/1.4047751
You do not currently have access to this content.