Abstract
To clarify the realistic upstream boundary conditions of hydrodynamic bearings, the oil spread in a complex system of parallel plates including an inlet tube and axial groove is studied by the computational fluid dynamics (CFD) method. The effects of various design parameters including clearance, velocity of bottom plate, and inlet mass flowrate on oil spread-length are presented and explained. By intensive parametric study for these parameters, an empirical expression for the oil spread-length is derived. A groove with blind ends significantly increases the efficiency of the system. A comparison with experimental observation validates the present model as a proper one for accurately solving oil spread in similar systems.
References
1.
Ahmad
, M. A.
, Kasolang
, S.
, and Dwyer-Joyce
, R. S.
, 2014
, “Experimental Study on the Effects of Oil Groove Location on Temperature and Pressure Profiles in Journal Bearing Lubrication
,” Tribol. Int.
, 74
(6
), pp. 79
–86
. 10.1016/j.triboint.2014.02.0122.
Pinkus
, O.
, and Sternlicht
, B.
, 1961
, Theory of Hydrodynamic Lubrication
, Chapter 4, MCGraw-Hm
, New York
.3.
Cameron
, A.
, and Wood
, W. L.
, 1949
, “The Full Journal Bearing
,” Proc. Inst. Mech. Eng.
, 161
(1
), pp. 59
–72
. 10.1243/PIME_PROC_1949_161_010_024.
Cole
, J. A.
, and Hughes
, C. J.
, 1956
, “Oil Flow and Film Extent in Complete Journal Bearings
,” Proc. Inst. Mech. Eng.
, 170
(1
), pp. 499
–510
. 10.1243/PIME_PROC_1956_170_052_025.
Etsion
, I.
, 1973
, “Viscous Flow in Finite Journal Bearings
,” PhD thesis
, Technion-Israel Institute of Technology
, Haifa
.6.
Etsion
, I.
, and Pinkus
, O.
, 1974
, “Analysis of Short Journal Bearings With New Boundary Conditions
,” ASME J. Lubr. Technol.
, 96
(3
), pp. 489
–496
. 10.1115/1.34520207.
Etsion
, I.
, and Pinkus
, O.
, 1975
, “Solutions of Finite Journal Bearings With Incomplete Films
,” ASME J. Lubr. Technol.
, 97
(1
), pp. 89
–100
. 10.1115/1.34525408.
Pinkus
, O.
, and Etsion
, I.
, 1976
, “Leakage-Free Journal Bearings
,” ASME J. Lubr. Technol.
, 98
(3
), pp. 441
–445
. 10.1115/1.34528849.
Etsion
, I.
, and Barkon
, I.
, 1981
, “Analysis of a Hydrodynamic Thrust Bearing With Incomplete Film
,” ASME J. Lubr. Technol.
, 103
(3
), pp. 355
–360
. 10.1115/1.325167310.
Heshmat
, H.
, Artiles
, A.
, and Pinkus
, O.
, 1987
, “Parametric Study and Optimization of Starved Thrust Bearings
,” Tribol. Ser.
, 11
(2
), pp. 105
–112
. 10.1016/S0167-8922(08)70935-011.
Greenshields
, C. J.
, 2020
, OpenFOAM User Guide
, 8th ed., Chap. 2, OpenFOAM Foundation Ltd.
, Boston, MA
.12.
Adeniyi
, A. A.
, Morvan
, H.
, and Simmons
, K.
, 2017
, “A Computational Fluid Dynamics Simulation of Oil-Air Flow Between the Cage and Inner Race of an Aero-engine Bearing
,” ASME J. Eng. Gas Turbines Power
, 139
(1
), p. 012506
. 10.1115/1.403421013.
Aidun
, C. K.
, Triantafillopoulos
, N. G.
, and Benson
, J. D.
, 1991
, “Global Stability of a Lid-Driven Cavity With Throughflow: Flow Visualization Studies
,” Phys. Fluids A Fluid Dyn.
, 3
(9
), pp. 2081
–2091
. 10.1063/1.85789114.
Gaskell
, P. H.
, Rand
, B.
, Summers
, J. L.
, and Thompson
, H. M.
, 1997
, “The Effect of Reservoir Geometry on the Flow Within Ceramic Tape Casters
,” J. Eur. Ceram. Soc.
, 17
(10
), pp. 1185
–1192
. 10.1016/S0955-2219(96)00234-815.
Kundu
, P. K.
, Cohen
, I. M.
, and Hu
, H. H.
, 2004
, Fluid Mechanics
, 2nd ed., Chap. 9, Academic Press
, San Diego, CA
.16.
Bodoia
, J. R.
, and Osterle
, J. F.
, 1961
, “Finite Difference Analysis of Plane Poiseuille and Couette Flow Developments
,” Appl. Sci. Res.
, 10
(1
), p. 265
. 10.1007/BF0041191917.
Shankar
, P. N.
, 1993
, “The Eddy Structure in Stokes Flow in a Cavity
,” J. Fluid Mech.
, 250
(5
), pp. 371
–383
. 10.1017/S002211209300149118.
Ghia
, U.
, Ghia
, K. N.
, and Shin
, C. T.
, 1982
, “High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method
,” J. Comput. Phys.
, 48
(3
), pp. 387
–411
. 10.1016/0021-9991(82)90058-419.
Pearson
, B. R.
, Elavarasan
, R.
, and Antonia
, R. A.
, 1997
, “The Response of a Turbulent Boundary Layer to a Square Groove
,” ASME J. Fluids Eng.
, 119
(2
), pp. 466
–469
. 10.1115/1.281916020.
Shyu
, S. H.
, and Hsu
, W. C.
, 2018
, “A Numerical Study on the Negligibility of Cross-Film Pressure Variation in Infinitely Wide Plane Slider Bearing, Rayleigh Step Bearing and Micro-Grooved Parallel Slider Bearing
,” Int. J. Mech. Sci.
, 137
(3
), pp. 315
–323
. 10.1016/j.ijmecsci.2018.01.03121.
Wu
, W.
, Xiong
, Z.
, Hu
, J.
, and Yuan
, S.
, 2015
, “Application of CFD to Model Oil-Air Flow in a Grooved Two-Disc System
,” Int. J. Heat Mass Transf.
, 91
(12
), pp. 293
–301
. 10.1016/j.ijheatmasstransfer.2015.07.09222.
Neupert
, T.
, and Bartel
, D.
, 2019
, “High-Resolution 3D CFD Multiphase Simulation of the Flow and the Drag Torque of Wet Clutch Discs Considering Free Surfaces
,” Tribol. Int.
, 129
(1
), pp. 283
–296
. 10.1016/j.triboint.2018.08.03123.
Grzegorz
, R.
, and Michal
, W.
, “CFD Analysis of the Lubricant Flow in the Supply Groove of a Hydrodynamic Thrust Bearing Pad
,” International Joint Tribology Conference
, San Diego, CA
, October 22-24, 2007
, pp. 307
–309
.24.
Yu
, T. H.
, and Sadeghi
, F.
, 2001
, “Groove Effects on Thrust Washer Lubrication
,” ASME J. Trib.
, 123
(2
), pp. 295
–304
. 10.1115/1.130801425.
Vijayaraghavan
, D.
, and Keith
, T. G.
, 1992
, “Effect of Type and Location of Oil Groove on the Performance of Journal Bearings
,” Tribol. Trans.
, 35
(1
), pp. 98
–106
. 10.1080/1040200920898209526.
Brito
, F. P.
, Miranda
, A. S.
, Claro
, J. C. P.
, Teixeira
, J. C.
, Costa
, L.
, and Fillon
, M.
, 2014
, “The Role of Lubricant Feeding Conditions on the Performance Improvement and Friction Reduction of Journal Bearings
,” Tribol. Int.
, 72
(4
), pp. 65
–82
. 10.1016/j.triboint.2013.11.01627.
Gethin
, D. T.
, and El Deihi
, M. K. I.
, 1987
, “Effect of Loading Direction on the Performance of a Twin-Axial Groove Cylindrical-Bore Bearing
,” Tribol. Int.
, 20
(4
), pp. 179
–185
. 10.1016/0301-679X(87)90073-928.
Pilliod
, J. E.
, Jr, and Puckett
, E. G.
, 2004
, “Second-Order Accurate Volume-of-Fluid Algorithms for Tracking Material Interfaces
,” J. Comput. Phys.
, 199
(2
), pp. 465
–502
. 10.1016/j.jcp.2003.12.02329.
Kleinstreuer
, C.
, 2003
, Two-Phase Flow: Theory and Applications
, Chap. 2, CRC Press
, New York
.30.
Mirjalili
, S.
, Ivey
, C. B.
, and Mani
, A.
, 2019
, “Comparison Between the Diffuse Interface and Volume of Fluid Methods for Simulating Two-Phase Flows
,” Int. J. Multiph. Flow
, 116
(7
), pp. 221
–238
. 10.1016/j.ijmultiphaseflow.2019.04.01931.
Hirt
, C. W.
, and Nichols
, B. D.
, 1981
, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,” J. Comput. Phys.
, 39
(1
), pp. 201
–225
. 10.1016/0021-9991(81)90145-532.
Fluent
, A.
, 2013
, Ansys Fluent Theory Guide
, 15th ed., Chap. 20, ANSYS Inc.
, Canonsburg, PA
.33.
Anderson
, J. D.
, 2003
, Modern Compressible Flow: With Historical Perspective
, 3rd ed., Chap. 1, McGraw-Hill Education
, New York
.34.
Ochiai
, M.
, Sakai
, F.
, and Hashimoto
, H.
, 2019
, “Reproducibility of Gaseous Phase Area on Journal Bearing Utilizing Multi-phase Flow CFD Analysis Under Flooded and Starved Lubrication Conditions
,” Lubricants
, 7
(9
), p. 74
. 10.3390/lubricants709007435.
Wolfram
, S.
, 2017
, Wolfram Mathematica
, 11th ed., Wolfram Research Inc.
, Champaign, IL
.36.
Khonsari
, M. M.
, and Booser
, E. R.
, 2008
, Applied Tribology: Bearing Design and Lubrication
, 2nd ed., Chap. 5
, John Wiley & Sons Ltd.
, West Sussex, UK
.Copyright © 2021 by ASME
You do not currently have access to this content.