Abstract

To clarify the realistic upstream boundary conditions of hydrodynamic bearings, the oil spread in a complex system of parallel plates including an inlet tube and axial groove is studied by the computational fluid dynamics (CFD) method. The effects of various design parameters including clearance, velocity of bottom plate, and inlet mass flowrate on oil spread-length are presented and explained. By intensive parametric study for these parameters, an empirical expression for the oil spread-length is derived. A groove with blind ends significantly increases the efficiency of the system. A comparison with experimental observation validates the present model as a proper one for accurately solving oil spread in similar systems.

References

1.
Ahmad
,
M. A.
,
Kasolang
,
S.
, and
Dwyer-Joyce
,
R. S.
,
2014
, “
Experimental Study on the Effects of Oil Groove Location on Temperature and Pressure Profiles in Journal Bearing Lubrication
,”
Tribol. Int.
,
74
(
6
), pp.
79
86
. 10.1016/j.triboint.2014.02.012
2.
Pinkus
,
O.
, and
Sternlicht
,
B.
,
1961
,
Theory of Hydrodynamic Lubrication
,
Chapter 4, MCGraw-Hm
,
New York
.
3.
Cameron
,
A.
, and
Wood
,
W. L.
,
1949
, “
The Full Journal Bearing
,”
Proc. Inst. Mech. Eng.
,
161
(
1
), pp.
59
72
. 10.1243/PIME_PROC_1949_161_010_02
4.
Cole
,
J. A.
, and
Hughes
,
C. J.
,
1956
, “
Oil Flow and Film Extent in Complete Journal Bearings
,”
Proc. Inst. Mech. Eng.
,
170
(
1
), pp.
499
510
. 10.1243/PIME_PROC_1956_170_052_02
5.
Etsion
,
I.
,
1973
, “
Viscous Flow in Finite Journal Bearings
,”
PhD thesis
,
Technion-Israel Institute of Technology
,
Haifa
.
6.
Etsion
,
I.
, and
Pinkus
,
O.
,
1974
, “
Analysis of Short Journal Bearings With New Boundary Conditions
,”
ASME J. Lubr. Technol.
,
96
(
3
), pp.
489
496
. 10.1115/1.3452020
7.
Etsion
,
I.
, and
Pinkus
,
O.
,
1975
, “
Solutions of Finite Journal Bearings With Incomplete Films
,”
ASME J. Lubr. Technol.
,
97
(
1
), pp.
89
100
. 10.1115/1.3452540
8.
Pinkus
,
O.
, and
Etsion
,
I.
,
1976
, “
Leakage-Free Journal Bearings
,”
ASME J. Lubr. Technol.
,
98
(
3
), pp.
441
445
. 10.1115/1.3452884
9.
Etsion
,
I.
, and
Barkon
,
I.
,
1981
, “
Analysis of a Hydrodynamic Thrust Bearing With Incomplete Film
,”
ASME J. Lubr. Technol.
,
103
(
3
), pp.
355
360
. 10.1115/1.3251673
10.
Heshmat
,
H.
,
Artiles
,
A.
, and
Pinkus
,
O.
,
1987
, “
Parametric Study and Optimization of Starved Thrust Bearings
,”
Tribol. Ser.
,
11
(
2
), pp.
105
112
. 10.1016/S0167-8922(08)70935-0
11.
Greenshields
,
C. J.
,
2020
,
OpenFOAM User Guide
, 8th ed.,
Chap. 2, OpenFOAM Foundation Ltd.
,
Boston, MA
.
12.
Adeniyi
,
A. A.
,
Morvan
,
H.
, and
Simmons
,
K.
,
2017
, “
A Computational Fluid Dynamics Simulation of Oil-Air Flow Between the Cage and Inner Race of an Aero-engine Bearing
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012506
. 10.1115/1.4034210
13.
Aidun
,
C. K.
,
Triantafillopoulos
,
N. G.
, and
Benson
,
J. D.
,
1991
, “
Global Stability of a Lid-Driven Cavity With Throughflow: Flow Visualization Studies
,”
Phys. Fluids A Fluid Dyn.
,
3
(
9
), pp.
2081
2091
. 10.1063/1.857891
14.
Gaskell
,
P. H.
,
Rand
,
B.
,
Summers
,
J. L.
, and
Thompson
,
H. M.
,
1997
, “
The Effect of Reservoir Geometry on the Flow Within Ceramic Tape Casters
,”
J. Eur. Ceram. Soc.
,
17
(
10
), pp.
1185
1192
. 10.1016/S0955-2219(96)00234-8
15.
Kundu
,
P. K.
,
Cohen
,
I. M.
, and
Hu
,
H. H.
,
2004
,
Fluid Mechanics
, 2nd ed.,
Chap. 9, Academic Press
,
San Diego, CA
.
16.
Bodoia
,
J. R.
, and
Osterle
,
J. F.
,
1961
, “
Finite Difference Analysis of Plane Poiseuille and Couette Flow Developments
,”
Appl. Sci. Res.
,
10
(
1
), p.
265
. 10.1007/BF00411919
17.
Shankar
,
P. N.
,
1993
, “
The Eddy Structure in Stokes Flow in a Cavity
,”
J. Fluid Mech.
,
250
(
5
), pp.
371
383
. 10.1017/S0022112093001491
18.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
,
1982
, “
High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
,
48
(
3
), pp.
387
411
. 10.1016/0021-9991(82)90058-4
19.
Pearson
,
B. R.
,
Elavarasan
,
R.
, and
Antonia
,
R. A.
,
1997
, “
The Response of a Turbulent Boundary Layer to a Square Groove
,”
ASME J. Fluids Eng.
,
119
(
2
), pp.
466
469
. 10.1115/1.2819160
20.
Shyu
,
S. H.
, and
Hsu
,
W. C.
,
2018
, “
A Numerical Study on the Negligibility of Cross-Film Pressure Variation in Infinitely Wide Plane Slider Bearing, Rayleigh Step Bearing and Micro-Grooved Parallel Slider Bearing
,”
Int. J. Mech. Sci.
,
137
(
3
), pp.
315
323
. 10.1016/j.ijmecsci.2018.01.031
21.
Wu
,
W.
,
Xiong
,
Z.
,
Hu
,
J.
, and
Yuan
,
S.
,
2015
, “
Application of CFD to Model Oil-Air Flow in a Grooved Two-Disc System
,”
Int. J. Heat Mass Transf.
,
91
(
12
), pp.
293
301
. 10.1016/j.ijheatmasstransfer.2015.07.092
22.
Neupert
,
T.
, and
Bartel
,
D.
,
2019
, “
High-Resolution 3D CFD Multiphase Simulation of the Flow and the Drag Torque of Wet Clutch Discs Considering Free Surfaces
,”
Tribol. Int.
,
129
(
1
), pp.
283
296
. 10.1016/j.triboint.2018.08.031
23.
Grzegorz
,
R.
, and
Michal
,
W.
, “
CFD Analysis of the Lubricant Flow in the Supply Groove of a Hydrodynamic Thrust Bearing Pad
,”
International Joint Tribology Conference
,
San Diego, CA
,
October 22-24, 2007
, pp.
307
309
.
24.
Yu
,
T. H.
, and
Sadeghi
,
F.
,
2001
, “
Groove Effects on Thrust Washer Lubrication
,”
ASME J. Trib.
,
123
(
2
), pp.
295
304
. 10.1115/1.1308014
25.
Vijayaraghavan
,
D.
, and
Keith
,
T. G.
,
1992
, “
Effect of Type and Location of Oil Groove on the Performance of Journal Bearings
,”
Tribol. Trans.
,
35
(
1
), pp.
98
106
. 10.1080/10402009208982095
26.
Brito
,
F. P.
,
Miranda
,
A. S.
,
Claro
,
J. C. P.
,
Teixeira
,
J. C.
,
Costa
,
L.
, and
Fillon
,
M.
,
2014
, “
The Role of Lubricant Feeding Conditions on the Performance Improvement and Friction Reduction of Journal Bearings
,”
Tribol. Int.
,
72
(
4
), pp.
65
82
. 10.1016/j.triboint.2013.11.016
27.
Gethin
,
D. T.
, and
El Deihi
,
M. K. I.
,
1987
, “
Effect of Loading Direction on the Performance of a Twin-Axial Groove Cylindrical-Bore Bearing
,”
Tribol. Int.
,
20
(
4
), pp.
179
185
. 10.1016/0301-679X(87)90073-9
28.
Pilliod
,
J. E.
, Jr
, and
Puckett
,
E. G.
,
2004
, “
Second-Order Accurate Volume-of-Fluid Algorithms for Tracking Material Interfaces
,”
J. Comput. Phys.
,
199
(
2
), pp.
465
502
. 10.1016/j.jcp.2003.12.023
29.
Kleinstreuer
,
C.
,
2003
,
Two-Phase Flow: Theory and Applications
,
Chap. 2, CRC Press
,
New York
.
30.
Mirjalili
,
S.
,
Ivey
,
C. B.
, and
Mani
,
A.
,
2019
, “
Comparison Between the Diffuse Interface and Volume of Fluid Methods for Simulating Two-Phase Flows
,”
Int. J. Multiph. Flow
,
116
(
7
), pp.
221
238
. 10.1016/j.ijmultiphaseflow.2019.04.019
31.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
. 10.1016/0021-9991(81)90145-5
32.
Fluent
,
A.
,
2013
,
Ansys Fluent Theory Guide
, 15th ed.,
Chap. 20, ANSYS Inc.
,
Canonsburg, PA
.
33.
Anderson
,
J. D.
,
2003
,
Modern Compressible Flow: With Historical Perspective
, 3rd ed.,
Chap. 1, McGraw-Hill Education
,
New York
.
34.
Ochiai
,
M.
,
Sakai
,
F.
, and
Hashimoto
,
H.
,
2019
, “
Reproducibility of Gaseous Phase Area on Journal Bearing Utilizing Multi-phase Flow CFD Analysis Under Flooded and Starved Lubrication Conditions
,”
Lubricants
,
7
(
9
), p.
74
. 10.3390/lubricants7090074
35.
Wolfram
,
S.
,
2017
,
Wolfram Mathematica
, 11th ed.,
Wolfram Research Inc.
,
Champaign, IL
.
36.
Khonsari
,
M. M.
, and
Booser
,
E. R.
,
2008
,
Applied Tribology: Bearing Design and Lubrication
, 2nd ed.,
Chap. 5
,
John Wiley & Sons Ltd.
,
West Sussex, UK
.
You do not currently have access to this content.