Abstract

The dynamic characteristics of the double-pad inwardly pumping water-lubricated spiral-groove thrust bearing (SGTB) is different from that of the outwardly pumping version, especially under a high-speed condition. However, no literature on this topic can be found up to now. In this study, a comparative study on the dynamic characteristics of the two types of SGTBs is conducted. First, a turbulent lubrication model considering centrifugal and cavitating effects for the double-pad SGTB is developed based on gas–liquid two-phase flow. The steady-state and perturbed Reynolds equations of liquid phase are derived using linear perturbation method. Subsequently, the boundary fitted coordinate system and control volume method are applied to solve the Reynolds equations. Then, the axial stiffness coefficients of high-speed water-lubricated bearings are verified by an experimental study. Finally, the influence of operating conditions and configuration parameters on the dynamic behaviors for the two types of SGTBs is investigated. The results show that the double-pad outwardly pumping bearing is superior to the inwardly pumping version in all the dynamic coefficients when the radius ratio exceeds 0.65. When the tilt angle exceeds 1.2 × 10−4 as well as when the eccentricity ratio exceeds 0.7, the dynamic damping, angular and cross-coupled stiffness coefficients of the outwardly pumping bearing may be larger than those of the inwardly pumping one.

References

1.
Muijderman
,
E. A.
,
1967
, “
Analysis and Design of Spiral-Groove Bearings
,”
ASME J. Lubr. Technol.
,
89
(
3
), pp.
291
305
. 10.1115/1.3616974
2.
Bootsma
,
J.
,
1975
, “
Liquid-lubricated spiral-groove bearings
,”
Philips Research Reports-Supplements, No. 7
,
The Netherlands
.
3.
Yoshimoto
,
S.
,
Anno
,
Y.
,
Tamura
,
M.
,
Kakiuchi
,
Y.
, and
Kimura
,
K.
,
1996
, “
Axial Load Capacity of Water-Lubricated Hydrostatic Conical Bearings With Spiral Grooves (on the Case of Rigid Surface Bearings)
,”
ASME J. Tribol.
,
118
(
4
), pp.
893
899
. 10.1115/1.2831625
4.
Yoshimoto
,
S.
,
Kume
,
T.
, and
Shitara
,
T.
,
1998
, “
Axial Load Capacity of Water-Lubricated Hydrostatic Conical Bearings With Spiral Grooves for High Speed Spindles
,”
Tribol. Int.
,
31
(
6
), pp.
331
338
. 10.1016/S0301-679X(98)00043-7
5.
Lin
,
X.
,
Jiang
,
S.
,
Zhang
,
C.
, and
Liu
,
X.
,
2018
, “
Thermohydrodynamic Analysis of High Speed Water-Lubricated Spiral Groove Thrust Bearing Considering Effects of Cavitation, Inertia and Turbulence
,”
Tribol. Int.
,
119
, pp.
645
658
. 10.1016/j.triboint.2017.11.037
6.
Lin
,
X.
,
Wang
,
R.
,
Zhang
,
S.
,
Zhang
,
C.
, and
Jiang
,
S.
,
2019
, “
Study of Cavitation Bubbles Evolution for High-Speed Water-Lubricated Spiral Groove Thrust Bearings
,”
ASME J. Tribol.
,
141
(
5
), p.
051703
. 10.1115/1.4042760
7.
Malanoski
,
S. B.
, and
Pan
,
C. H. T.
,
1965
, “
Static and Dynamic Characteristics of the Spiral-Grooved Thrust Bearing
,”
ASME J. Basic Eng.
,
87
(
3
), pp.
547
555
. 10.1115/1.3650603
8.
Jang
,
G.
, and
Lee
,
S.
,
2006
, “
Determination of the Dynamic Coefficients of the Coupled Journal and Thrust Bearings by the Perturbation Method
,”
Tribol. Lett.
,
22
(
3
), pp.
239
246
. 10.1007/s11249-006-9087-7
9.
Jang
,
G. H.
, and
Kim
,
Y. J.
,
1999
, “
Calculation of Dynamic Coefficients in a Hydrodynamic Bearing Considering Five Degrees of Freedom for a General Rotor-Bearing System
,”
ASME J. Tribol.
,
121
(
3
), pp.
499
505
. 10.1115/1.2834095
10.
Kim
,
M.
,
Jang
,
G.
, and
Kim
,
H.
,
2010
, “
Stability Analysis of a Disk-Spindle System Supported by Coupled Journal and Thrust Bearings Considering Five Degrees of Freedom
,”
Tribol. Int.
,
43
(
8
), pp.
1479
1490
. 10.1016/j.triboint.2010.02.007
11.
Faria
,
M. T. C.
,
2004
, “
Finite Element Analysis of the Misalignment Effects on the Dynamic Force Coefficients of Spiral Groove gas Face Seals
,”
JSME Int. J., Ser. C
,
47
(
1
), pp.
289
296
. 10.1299/jsmec.47.289
12.
Yang
,
W.
,
Hao
,
M.
,
Li
,
Z.
, and
Cao
,
H.
,
2017
, “
Dynamic Characteristics Analysis of Spiral Groove Liquid Lubricated Seal Considering Centrifugal Inertia
,”
5th International Conference on Mechanical, Automotive and Materials Engineering (CMAME)
,
Guangzhou, China
,
Aug. 1–3
, pp.
114
118
.
13.
Hashimoto
,
H.
, and
Ochiai
,
M.
,
2007
, “
Theoretical Analysis and Optimum Design of High Speed gas Film Thrust Bearings (Static and Dynamic Characteristics Analysis with Experimental Verifications)
,”
J. Adv. Mech. Des. Syst. Manuf.
,
1
(
3
), pp.
306
318
. 10.1299/jamdsm.1.306
14.
Hashimoto
,
H.
, and
Ochiai
,
M.
,
2008
, “
Optimization of Groove Geometry for Thrust air Bearing to Maximize Bearing Stiffness
,”
ASME J. Tribol.
,
130
(
3
), p.
031101
. 10.1115/1.2913546
15.
Ochiai
,
M.
,
Sunami
,
Y.
, and
Hashimoto
,
H.
,
2014
, “
Study on Angular Displacement Characteristics on Topological Optimum Design Problem of Hydrodynamic Thrust air Bearing
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
228
(
9
), pp.
997
1007
. 10.1177/1350650114534835
16.
Liu
,
R.
,
Wang
,
X. L.
, and
Zhang
,
X. Q.
,
2012
, “
Effects of gas Rarefaction on Dynamic Characteristics of Micro Spiral-Grooved Thrust Bearing
,”
ASME J. Tribol.
,
134
(
2
), p.
022201
. 10.1115/1.4006359
17.
Zhao
,
Y.
,
Wei
,
C.
,
Yuan
,
S.
, and
Hu
,
J.
,
2016
, “
Theoretical and Experimental Study of Cavitation Effects on the Dynamic Characteristic of Spiral-Groove Rotary Seals (SGRSs)
,”
Tribol. Lett.
,
64
(
3
), p.
50
. 10.1007/s11249-016-0784-6
18.
Zhao
,
X.
,
Yuan
,
S. H.
, and
Wei
,
C.
,
2018
, “
Influence of Fluid Slip on Operation Characteristics for High-Speed Spiral Groove Seal Ring
,”
Tribol. Lett.
,
66
(
1
), p.
49
. 10.1007/s11249-018-0991-4
19.
Satomi
,
T.
, and
Lin
,
G.
,
1993
, “
Design Optimization of Spirally Grooved Thrust air Bearings for Polygon Mirror Laser Scanners
,”
JSME Int J., Ser. C
,
36
(
3
), pp.
393
399
.
20.
Constantinescu
,
V. N.
, and
Galetuse
,
S.
,
1982
, “
Operating Characteristics of Journal Bearings in Turbulent Inertial Flow
,”
ASME J. Lubr. Technol.
,
104
(
2
), pp.
173
179
. 10.1115/1.3253177
21.
Szeri
,
A. Z.
,
2011
,
Fluid Film Lubrication
,
Cambridge University Press
,
Cambridge, New York
.
22.
Kawabata
,
N.
,
Ashino
,
I.
, and
Tachibana
,
M.
,
1991
, “
A Useful Numerical Analysis Method for the Dynamic Characteristics of Fluid Film Lubrication (the Case of Incompressible Fluid Lubrication)
,”
JSME Int J., Ser. 3, Vib., Control Eng., Eng. Ind.
,
34
(
1
), pp.
91
96
.
23.
Brunetiere
,
N.
,
Tournerie
,
B.
, and
Frene
,
J.
,
2002
, “
Influence of Fluid Flow Regime on Performances of non-Contacting Liquid Face Seals
,”
ASME J. Tribol.
,
124
(
3
), pp.
515
523
. 10.1115/1.1456453
24.
Liu
,
Y.
, and
Hinrichsen
,
O.
,
2014
, “
Study on CFD–PBM Turbulence Closures Based on k–ɛ and Reynolds Stress Models for Heterogeneous Bubble Column Flows
,”
Comput. Fluids
,
105
, pp.
91
100
. 10.1016/j.compfluid.2014.09.023
25.
Seo
,
J. H.
,
Lele
,
S. K.
, and
Tryggvason
,
G.
,
2010
, “
Investigation and Modeling of Bubble-Bubble Interaction Effect in Homogeneous Bubbly Flows
,”
Phys. Fluids
,
22
(
6
), p.
063302
. 10.1063/1.3432503
26.
Tsuchiya
,
K.
,
Furumoto
,
A.
,
Fan
,
L. S.
, and
Zhang
,
J.
,
1997
, “
Suspension Viscosity and Bubble Rise Velocity in Liquid-Solid Fluidized Beds
,”
Chem. Eng. Sci.
,
52
(
18
), pp.
3053
3066
. 10.1016/S0009-2509(97)00127-9
27.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H. Y.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluid Eng.
,
124
(
3
), pp.
617
624
. 10.1115/1.1486223
28.
Whipple
,
R. T. P.
,
1958
, “The inclined groove bearing,”
Atomic Energy Research Establishment
,
Harwell, Berkshire, UK
,
Report No. AERE-T/R-622
.
29.
Rayleigh
,
L.
,
1917
, “
On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
34
(
200
), pp.
94
98
. 10.1080/14786440808635681
30.
Plesset
,
M.
,
1949
, “
The Dynamics of Cavitation Bubbles
,”
ASME J. Appl. Mech.
,
16
(
3
), pp.
277
282
.
31.
Ishii
,
M.
, and
Hibili
,
T.
,
2011
,
Thermo-Fluid Dynamics of Two-Phase Flow
, 2nd ed.,
Springer
,
New York
.
32.
Li
,
H.
,
Kelecy
,
F. J.
,
Egelja-Maruszewski
,
A.
, and
Vasquez
,
S. A.
,
2008
, “
Advanced Computational Modeling of Steady and Unsteady Cavitating Flows
,”
ASME International Mechanical Engineering Congress and Exposition (IMECE)
,
Boston
,
Oct. 31–Nov. 6
, p.
67450
.
33.
Fukaya
,
M.
,
Okamura
,
T.
,
Tamura
,
M.
, and
Matsumoto
,
Y.
, “
Prediction of Cavitation Performance of Axial Flow Pump by Using Numerical Cavitating Flow Simulation with Bubble Flow Model
,”
Fifth International Symposium on Cavitation (CAV 2003)
,
Osaka, Japan
,
Nov. 1–4
.
34.
Zirkelback
,
N.
,
2000
, “
Parametric Study of Spiral Groove gas Face Seals
,”
Tribol. Trans.
,
43
(
2
), pp.
337
343
. 10.1080/10402000008982349
35.
Salant
,
R. F.
, and
Homiller
,
S. J.
,
1993
, “
Stiffness and Leakage in Spiral Groove Upstream Pumping Mechanical Seals
,”
Tribol. Trans.
,
36
(
1
), pp.
55
60
. 10.1080/10402009308983132
36.
Sharoni
,
A.
, and
Etsion
,
I.
,
1981
, “
Performance of end-Face Seals With Diametral Tilt and Coning–Hydrodynamic Effects
,”
ASLE Trans.
,
21
(
1
), pp.
61
70
. 10.1080/05698198108982998
37.
Hashimoto
,
H.
, and
Namba
,
T.
,
2009
, “
Optimization of Groove Geometry for a Thrust air Bearing According to Various Objective Functions
,”
ASME J. Tribol.
,
131
(4), p.
041704
. 10.1115/1.3201860
38.
Blasiak
,
S.
, and
Zahorulko
,
A. V.
,
2016
, “
A Parametric and Dynamic Analysis of Non-Contacting gas Face Seals With Modified Surfaces
,”
Tribol. Int.
,
94
, pp.
126
137
. 10.1016/j.triboint.2015.08.014
39.
Zhang
,
X.
,
Wang
,
X.
,
Liu
,
R.
, and
Wang
,
B.
,
2013
, “
Influence of Temperature on Nonlinear Dynamic Characteristics of Spiral-Grooved gas-Lubricated Thrust Bearing-Rotor Systems for Microengine
,”
Tribol. Int.
,
61
, pp.
138
143
. 10.1016/j.triboint.2012.12.013
You do not currently have access to this content.