Abstract

To improve the efficiency in nonlinear dynamic calculation of finite-length tilting-pad journal bearings (TPJBs) under dynamic loads, an analytical method for hydrodynamic bearing forces, which considers the turbulence effect, is proposed using the method of separation of variables under the dynamic Gümbel boundary condition. No thermal effects are considered because this method is designed for the low viscosity case. The infinitely long bearing pressure is introduced as the circumferential pressure, and a general solution of the nonhomogeneous Reynolds equation is derived as the axial pressure. The turbulence model of Ng and Pan is characterized by a linear function of film thicknesses. A complete analytical expression of hydrodynamic bearing forces is derived. The analytical simulation shows slight differences and extremely low time expense in lubricating and dynamic performance compared to published data and finite difference method (FDM) simulation. The analytical method could be used to fast evaluate the nonlinear dynamic performance of a TPJB-rotor system in the low viscosity environment, supporting the nonlinear dynamic design of the system.

References

1.
Baumgarten
,
S.
,
Brecht
,
B.
,
Bruhns
,
U.
, and
Fehring
,
P.
,
2010
, “
Reactor Coolant Pump Type RUV for Westinghouse Reactor AP1000
,”
Proceedings of International Congress on Advances in Nuclear Power Plants
,
San Diego, CA
,
June 13–17
, p.
10339
.
2.
Machado
,
T. H.
,
Alves
,
D. S.
, and
Cavalca
,
K. L.
,
2018
, “
Discussion About Nonlinear Boundaries for Hydrodynamic Forces in Journal Bearing
,”
Nonlinear Dyn.
,
92
(
4
), pp.
2005
2022
. 10.1007/s11071-018-4177-2
3.
Adams
,
M. L.
, and
Payandeh
,
S.
,
1983
, “
Self-Excited Vibration of Statically Unloaded Pads in Tilting-Pad Journal Bearings
,”
ASME J. Lubr. Technol.
,
105
(
3
), pp.
377
384
. 10.1115/1.3254616
4.
Abu-Mahfouz
,
I.
, and
Adams
,
M. L.
,
2005
, “
Numerical Study of Some Nonlinear Dynamics of a Rotor Supported on a Three-Pad Tilting Pad Journal Bearing (TPJB)
,”
ASME J. Vib. Acoust.
,
127
(
3
), pp.
262
272
. 10.1115/1.1888593
5.
Pagano
,
S.
,
Rocca
,
E.
,
Russo
,
M.
, and
Russo
,
R.
,
1997
, “
Instability Threshold of a Rigid Rotor-Tilting Pad Journal Bearings System
,”
Int. J. Rotating Mach.
,
3
(
3
), pp.
199
213
. 10.1155/S1023621X97000195
6.
Chen
,
Z. B.
,
Jiao
,
Y. H.
,
Xia
,
S. B.
,
Huang
,
W. H.
, and
Zhang
,
Z. M.
,
2002
, “
An Efficient Calculation Method of Nonlinear Fluid Film Forces in Journal Bearing
,”
Tribol. Trans.
,
45
(
3
), pp.
324
329
. 10.1080/10402000208982556
7.
Ying
,
J. Y.
,
Jiao
,
Y. H.
, and
Chen
,
Z. B.
,
2011
, “
Nonlinear Dynamics Analysis of Tilting Pad Journal Bearing-Rotor System
,”
Shock Vib.
,
18
(
1–2
), pp.
45
52
. 10.1155/2011/213742
8.
Jin
,
Y. Z.
,
Shi
,
Z. Y.
,
Zhang
,
X. J.
, and
Yuan
,
X. Y.
,
2020
, “
Rapid Solution for Analysis of Nonlinear Fluid Film Force and Dynamic Behavior of a Tilting-Pad Journal Bearing-Rotor System With Turbulent and Thermal Effects
,”
Friction
,
8
(
2
), pp.
343
359
. 10.1007/s40544-019-0263-9
9.
Okabe
,
E. P.
, and
Cavalca
,
K. L.
,
2009
, “
Rotordynamic Analysis of Systems With a Non-Linear Model of Tilting Pad Bearings Including Turbulence Effects
,”
Nonlinear Dyn.
,
57
(
4
), pp.
481
495
. 10.1007/s11071-008-9378-7
10.
Okabe
,
E. P.
,
2017
, “
Analytical Model of a Tilting Pad Bearing Including Turbulence and Fluid Inertia Effects
,”
Tribol. Int.
,
114
(
10
), pp.
245
256
. 10.1016/j.triboint.2017.04.030
11.
Sfyris
,
D.
, and
Chasalevris
,
A.
,
2012
, “
An Exact Analytical Solution of the Reynolds Equation for the Finite Journal Bearing Lubrication
,”
Tribol. Int.
,
55
(
11
), pp.
46
58
. 10.1016/j.triboint.2012.05.013
12.
Zhang
,
Y. F.
,
Li
,
X. W.
,
Dang
,
C.
,
Hei
,
D.
,
Wang
,
X.
, and
Lu
,
Y. J.
,
2019
, “
A Semianalytical Approach to Nonlinear Fluid Film Forces of a Hydrodynamic Journal Bearing With Two Axial Grooves
,”
Appl. Math. Model.
,
65
(
1
), pp.
318
332
. 10.1016/j.apm.2018.07.048
13.
Vignolo
,
G. G.
,
Barila
,
D. O.
, and
Quinzani
,
L. M.
,
2011
, “
Approximate Analytical Solution to Reynolds Equation for Finite Length Journal Bearings
,”
Tribol. Int.
,
44
(
10
), pp.
1089
1099
. 10.1016/j.triboint.2011.03.020
14.
Gong
,
R. Z.
,
Li
,
D. Y.
,
Wang
,
H. J.
,
Han
,
L.
, and
Qin
,
D. Q.
,
2016
, “
Analytical Solution of Reynolds Equation Under Dynamic Conditions
,”
Proc. Inst. Mech. Eng. Part J.-J. Eng. Tribol.
,
230
(
4
), pp.
416
427
. 10.1177/1350650115604654
15.
Zheng
,
T. S.
,
Yang
,
S. H.
,
Xiao
,
Z. H.
, and
Zhang
,
W.
,
2004
, “
A Ritz Model of Unsteady Oil-Film Forces for Nonlinear Dynamic Rotor-Bearing System
,”
ASME J. Appl. Mech.
,
71
(
2
), pp.
219
224
. 10.1115/1.1640369
16.
Wang
,
Y. L.
,
Liu
,
Z. S.
,
Kang
,
W. J.
, and
Yan
,
J. J.
,
2012
, “
Approximate Analytical Model for Fluid Film Force of Finite Length Plain Journal Bearing
,”
Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci.
,
226
(
C5
), pp.
1345
1355
. 10.1177/0954406211418302
17.
Wang
,
Y. L.
,
Gao
,
Y.
,
Cui
,
Y.
, and
Liu
,
Z. S.
,
2015
, “
Establishment of Approximate Analytical Model of Oil Film Force for Finite Length Tilting Pad Journal Bearings
,”
Int. J. Rotating Mach.
,
2015
(
5
), p.
531209
. 10.1155/2015/531209
18.
Bastani
,
Y.
, and
de Queiroz
,
M.
,
2010
, “
A New Analytic Approximation for the Hydrodynamic Forces in Finite-Length Journal Bearings
,”
ASME J. Tribol.
,
132
(
1
), p.
014502
. 10.1115/1.4000389
19.
Zhang
,
Y. F.
,
Hei
,
D.
,
Liu
,
C.
,
Guo
,
B. J.
,
Lu
,
Y. J.
, and
Muller
,
N.
,
2014
, “
An Approximate Solution of Oil Film Forces of Turbulent Finite Length Journal Bearing
,”
Tribol. Int.
,
74
(
6
), pp.
110
120
. 10.1016/j.triboint.2014.02.015
20.
D'Agostino
,
V.
,
Guida
,
D.
,
Ruggiero
,
A.
, and
Senatore
,
A.
,
2001
, “
An Analytical Study of the Fluid Film Force in Finite-Length Journal Bearings. Part I
,”
Lubr. Sci.
,
13
(
4
), pp.
329
340
. 10.1002/ls.3010130404
21.
Warner
,
P. C.
,
1963
, “
Static and Dynamic Properties of Partial Journal Bearings
,”
ASME J. Basic Eng.
,
85
(
2
), pp.
247
255
. 10.1115/1.3656569
22.
Taylor
,
C. M.
, and
Dowson
,
D.
,
1974
, “
Turbulent Lubrication Theory—Application to Design
,”
ASME J. Lubr. Technol.
,
96
(
1
), pp.
36
47
. 10.1115/1.3451905
23.
Taniguchi
,
S.
,
Makino
,
T.
,
Takeshita
,
K.
, and
Ichimura
,
T.
,
1990
, “
A Thermohydrodynamic Analysis of Large Tilting-Pad Journal Bearing in Laminar and Turbulent Flow Regimes With Mixing
,”
ASME J. Tribol.
,
112
(
3
), pp.
542
548
. 10.1115/1.2920291
24.
Bouard
,
L.
,
Fillon
,
M.
, and
Frene
,
J.
,
1996
, “
Comparison Between Three Turbulent Models—Application to Thermohydrodynamic Performances of Tilting-Pad Journal Bearings
,”
Tribol. Int.
,
29
(
1
), pp.
11
18
. 10.1016/0301-679X(95)00028-3
25.
Fillon
,
M.
,
Desbordes
,
H.
,
Frene
,
J.
, and
Wai
,
C. C. H.
,
1996
, “
A Global Approach of Thermal Effects Including Pad Deformations in Tilting-Pad Journal Bearings Submitted to Unbalance Load
,”
ASME J. Tribol.
,
118
(
1
), pp.
169
174
. 10.1115/1.2837074
26.
Armentrout
,
R. W.
,
He
,
M. H.
,
Haykin
,
T.
, and
Reed
,
A. E.
,
2017
, “
Analysis of Turbulence and Convective Inertia in a Water-Lubricated Tilting-Pad Journal Bearing Using Conventional and CFD Approaches
,”
Tribol. Trans.
,
60
(
6
), pp.
1129
1147
. 10.1080/10402004.2016.1251668
27.
San Andres
,
L.
, and
Tao
,
Y. J.
,
2013
, “
The Role of Pivot Stiffness on the Dynamic Force Coefficients of Tilting Pad Journal Bearings
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
112505
. 10.1115/1.4025070
28.
Yang
,
J.
, and
Palazzolo
,
A.
,
2019
, “
Three-Dimensional Thermo-Elasto-Hydrodynamic Computational Fluid Dynamics Model of a Tilting Pad Journal Bearing—Part I: Static Response
,”
ASME J. Tribol.
,
141
(
6
), p.
061702
. 10.1115/1.4043349
You do not currently have access to this content.