Abstract

The motions between the ball and raceway in a ball bearing involve rolling, gyroscopic, and spin slide. These complex motions result in the serious distribution of the friction force. Based on the contact mechanics in tribology, the friction force greatly affects stress and fatigue life. Thus, it is necessary to figure out the effects of the motions and its friction force of ball–raceway contact on the fatigue life of a ball bearing. In this paper, first, the equivalent model of ball–raceway contact was studied and established for the convenience of finite element calculation. Second, the contact mechanics considering the friction force with the friction coefficient from 0 to 0.3 was computed. The influences of the motions and its friction forces of ball–raceway contact on the raceway’s stress were analyzed. Third, based on different structure fatigue life algorithms, the raceway’s fatigue life of the cases with the friction coefficient 0, 0.05, 0.1, and 0.3 were studied. The raceway’s fatigue life based on ISO 281-2007 bearing life theory is studied. Results show that the friction force on the contact surface has some influence on the stress and fatigue life to a certain extent. Especially, the ball’s spin has the greatest influence on the stress distribution and fatigue life of the raceway. Thus, for the cases of heavy load and high friction coefficient, the effect of the friction force of ball–raceway contacts cannot be neglected.

References

References
1.
Hertz
,
H.
,
1896
,
On the Contact of Rigid Elastic Solids and on Hardness, Miscellaneous Papers
,
MacMillan
,
London
, pp.
163
183
.
2.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2007
,
Essential Concepts of Bearing Technology: Rolling Bearing Analysis
, 5th ed.,
CRC Press
,
Boca Raton, FL
, pp.
102
134
.
3.
Zwirlein
,
O.
, and
Schlicht
,
H.
,
1980
, “
Material Stressing Under Rolling Contact—Influence of Friction and Residual Stresses
,”
Zeitschrift fuer Werkstofftechnik/Materials Technology and Testing
,
11
(
1
), pp.
1
14
. 10.1002/mawe.19800110104
4.
Bryant
,
M. D.
, and
Keer
,
L. M.
,
1982
, “
Rough Contact Between Elastically and Geometrically Identical Curved Bodies
,”
ASME J. Appl. Mech.
,
49
(
2
), pp.
345
352
. 10.1115/1.3162092
5.
Mi
,
C.
,
2017
, “
Surface Mechanics Induced Stress Disturbances in an Elastic Half-Space Subjected to Tangential Surface Loads
,”
Eur. J. Mech.—A/Solids
,
65
, pp.
59
69
. 10.1016/j.euromechsol.2017.03.006
6.
Harris
,
T.
, and
Yu
,
W. K.
,
1999
, “
Lundberg-Palmgren Fatigue Theory: Considerations of Failure Stress and Stressed Volume
,”
ASME J. Tribol.
,
121
(
1
), pp.
85
90
. 10.1115/1.2833815
7.
Ioannides
,
E.
, and
Harris
,
T.
,
1985
, “
A New Fatigue Life Model for Rolling Bearings
,”
ASME J. Tribol.
,
107
(
3
), pp.
367
378
. 10.1115/1.3261081
8.
ISO 281
,
2007(E)
, “
Rolling Bearings-Dynamic Load Ratings and Rating Life
,”
Proceedings of the International Organization for Standardization
,
Geneva, Switzerland
.
9.
ISO 16281
,
2008
, “
Rolling Bearings-Methods for Calculating the Modified Reference Rating Life for Universally Loaded Bearings
,”
Proceedings of the International Organization for Standardization
,
Geneva, Switzerland
.
10.
Chen
,
G.
, and
Wen
,
J.
,
2015
, “
Effects of Size and Raceway Hardness on the Fatigue Life of Large Rolling Bearing
,”
J. Mech. Sci. Technol.
,
29
(
9
), pp.
3873
3883
. 10.1007/s12206-015-0833-3
11.
He
,
P.
,
Liu
,
R.
,
Hong
,
R.
,
Wang
,
H.
,
Yang
,
G.
, and
Lu
,
C.
,
2018
, “
Hardened Raceway Calculation Analysis of a Three-row Roller Slewing Bearing
,”
Int. J. Mech. Sci.
,
137
, pp.
133
144
. 10.1016/j.ijmecsci.2018.01.021
12.
Göncz
,
P.
, and
Glodež
,
S.
,
2014
, “
Rolling Contact Fatigue Life Assessment of Induction Hardened Raceway
,”
Proc. Eng.
,
74
, pp.
392
396
. 10.1016/j.proeng.2014.06.286
13.
Chen
,
W. W.
,
Wang
,
F.
,
Keer
,
L. M.
, and
Cao
,
J.
,
2008
, “
Three-Dimensional Repeated ElastoPlastic Point Contacts, Rolling, and Sliding
,”
ASME J. Appl. Mech.
,
75
(
2
), p.
021021
. 10.1115/1.2755171
14.
Ali
,
M. Y.
, and
Pan
,
J.
,
2012
, “
Effect of a Deformable Roller on Residual Stress Distribution for Elastic-Plastic Flat Plate Rolling Under Plane Strain Conditions
,”
SAE Int. J. Mater. Manuf.
,
5
(
1
), pp.
129
142
. 10.4271/2012-01-0190
15.
Slack
,
T.
, and
Sadeghi
,
F.
,
2010
, “
Explicit Finite Element Modeling of Subsurface Initiated Spalling in Rolling Contacts
,”
Tribol. Int.
,
43
(
9
), pp.
1693
1702
. 10.1016/j.triboint.2010.03.019
16.
Guo
,
J.
,
Yang
,
M.
,
Lu
,
D.
, and
Li
,
X.
,
2017
, “
Rolling Contact Fatigue and Wear Characteristics of Cr4Mo4V Bearing Steel
,”
Tribology
,
37
(
2
), pp.
155
166
. 10.16078/j.tribology.2017.02.003.
17.
Göncz
,
P.
,
Potočnik
,
R.
, and
Glodež
,
S.
,
2010
, “
Fatigue Behaviour of 42CrMo4 Steel Under Contact Loading
,”
Proc. Eng.
,
2
(
1
), pp.
1991
1999
. 10.1016/j.proeng.2010.03.214
18.
Ali
,
M.
,
Michlik
,
P.
, and
Pan
,
J.
,
2016
, “
Residual Stress Distributions in Rectangular Bars Due to High Rolling Loads
,”
SAE Int. J. Mater. Manuf.
,
9
(
3
), pp.
661
678
. 10.4271/2016-01-0424
19.
FE-SAFEIn.
,
2011
,
FE-SAFE User’s Manual
,
Dassault Systemes
,
France
.
20.
Morrow
,
J.
,
1968
,
Fatigue Design Handbook
, 4th ed,
Society of Automotive Engineers
,
Warrendate, Pennsylvania
, pp.
21
29
.
21.
Cheng
,
W.
,
Cheng
,
H. S.
,
Mura
,
T.
, and
Keer
,
L. M.
,
1994
, “
Micromechanics Modeling of Crack Initiation Under Contact Fatigue
,”
ASME J. Tribol.
,
116
(
1
), pp.
2
8
. 10.1115/1.2927042
You do not currently have access to this content.