Abstract

In this study, the tribological performances of the colloidal suspensions with the additives of nano-silver and nano-gold were examined via wear experiments of AA7075-T6 material. The nanoparticles were penetrated in the wear region using suspensions prepared in distilled water and ethylene glycol environment. The wear experiments were performed under 30 N load and 20 rpm speed condition in 1000 m wear distance using the ball-on-plate method. The worn surfaces were analyzed with a three-dimensional profilometer, scanning electron microscope/energy-dispersive X-ray (EDX), and atomic force microscope (AFM) methods. According to the results, the colloidal dispersed nano-gold particles in ethylene glycol performed 28.85% better on reducing the surface roughness, 2.32% on reducing the weight loss, 4.85% on increasing the heat transfer, and 1.22% on reducing the friction coefficient than the nano-silver particles.

References

References
1.
Lu
,
K.
,
2008
, “
Theoretical Analysis of Colloidal Interaction Energy in Nanoparticle Suspensions
,”
Ceram. Int.
,
34
(
6
), pp.
1353
1360
. 10.1016/j.ceramint.2007.02.016
2.
Ge
,
L.
,
Li
,
Q.
,
Wang
,
M.
,
Ouyang
,
J.
,
Li
,
X.
, and
Xing
,
M. M. Q.
,
2014
, “
Nanosilver Particles in Medical Applications: Synthesis, Performance, and Toxicity
,”
Int. J. Nanomed.
,
9
(
1
), pp.
2399
2407
. 10.2147/ijn.s55015
3.
Tian
,
Y.
,
Chen
,
J.
,
Zahtabi
,
F.
,
Keijzer
,
R.
, and
Xing
,
M.
,
2013
, “
Nanomedicine as an Innovative Therapeutic Strategy for Pediatric Lung Diseases
,”
Pediatr. Pulmonol.
,
48
(
11
), pp.
1098
1111
. 10.1002/ppul.22657
4.
Dong
,
J.
, and
Chen
,
G.
,
2001
, “
Preparation of Ni Nanoparticles and Evaluation of Their Tribological Performance as Potential Additives in Oils
,”
ASME J. Tribol.
,
123
(
3
), pp.
441
443
. 10.1115/1.1286152
5.
Mohamed
,
A.
, and
Xing
,
M. M.
,
2012
, “
Nanomaterials and Nanotechnology for Skin Tissue Engineering
,”
Int. J. Burns Trauma
,
2
(
1
), pp.
29
41
.
6.
Chetan
,
B. C.
,
Ghosh
,
S.
, and
Rao
,
P. V.
,
2016
, “
Application of Nanofluids During Minimum Quantity Lubrication: A Case Study in Turning Process
,”
Tribol. Int.
,
101
, pp.
234
246
. 10.1016/j.triboint.2016.04.019
7.
Chen
,
J.
,
Ouyang
,
J.
,
Kong
,
J.
,
Zhong
,
W.
, and
Xing
,
M. M.
,
2013
, “
Photo-Cross-Linked and PH-Sensitive Biodegradable Micelles for Doxorubicin Delivery
,”
ACS Appl. Mater. Interfaces
,
5
(
8
), pp.
3108
3117
. 10.1021/am400017q
8.
Ma
,
S.
,
Zheng
,
S.
,
Cao
,
D.
, and
Guo
,
H.
,
2010
, “
Anti-Wear and Friction Performance of ZrO2 Nanoparticles as Lubricant Additive
,”
Particuology
,
8
(
5
), pp.
468
472
. 10.1016/j.partic.2009.06.007
9.
Amrita
,
M.
,
Shariq
,
S. A.
,
Manoj
,
M.
, and
Gopal
,
C.
,
2014
, “
Experimental Investigation on Application of Emulsifier Oil Based Nano Cutting Fluids in Metal Cutting Process
,”
Procedia Eng.
,
97
, pp.
115
124
. 10.1016/j.proeng.2014.12.231
10.
Ajithkumar
,
J. P.
, and
Anthony Xavior
,
M.
,
2018
, “
Influence of Nano Lubrication in Machining Operations—A Review
,”
Mater. Today Proceedings
,
5
(
5
), pp.
11185
11192
. 10.1016/j.matpr.2018.01.142
11.
Zhou
,
J.
,
Wu
,
Z.
,
Zhang
,
Z.
,
Liu
,
W.
, and
Xue
,
Q.
,
2000
, “
Tribological Behavior and Lubricating Mechanism of Cu Nanoparticles in Oil
,”
Tribol. Lett.
,
8
(
4
), pp.
213
218
. 10.1023/A:1019151721801
12.
Xu
,
L.
,
Zhang
,
Y.
,
Zhang
,
D.
, and
Leng
,
M.
,
2018
, “
Preparation and Tribological Properties of Ag Nanoparticles/Reduced Graphene Oxide Nanocomposites
,”
Ind. Lubr. Tribol.
,
70
(
9
), pp.
1684
1691
. 10.1108/ILT-03-2017-0054
13.
Wu
,
Y. Y.
,
Tsui
,
W. C.
, and
Liu
,
T. C.
,
2007
, “
Experimental Analysis of Tribological Properties of Lubricating Oils With Nanoparticle Additives
,”
Wear
,
262
(
7–8
), pp.
819
825
. 10.1016/j.wear.2006.08.021
14.
Asrul
,
M.
,
Zulkifli
,
N. W. M.
,
Masjuki
,
H. H.
, and
Kalam
,
M. A.
,
2013
, “
Tribological Properties and Lubricant Mechanism of Nanoparticle in Engine Oil
,”
Procedia Eng.
,
68
, pp.
320
325
. 10.1016/j.proeng.2013.12.186
15.
Saravanakumar
,
N.
,
Prabu
,
L.
,
Karthik
,
M.
, and
Rajamanickam
,
A.
,
2014
, “
Experimental Analysis on Cutting Fluid Dispersed With Silver Nano Particles
,”
J. Mech. Sci. Technol.
,
28
(
2
), pp.
645
651
. 10.1007/s12206-013-1192-6
16.
Khandekar
,
S.
,
Sankar
,
M. R.
,
Agnihotri
,
V.
, and
Ramkumar
,
J.
,
2012
, “
Nano-Cutting Fluid for Enhancement of Metal Cutting Performance
,”
Mater. Manuf. Processes
,
27
(
9
), pp.
963
967
. 10.1080/10426914.2011.610078
17.
Xie
,
H.
,
Jiang
,
B.
,
He
,
J.
,
Xia
,
X.
, and
Pan
,
F.
,
2016
, “
Lubrication Performance of MoS2 and SiO2 Nanoparticles as Lubricant Additives in Magnesium Alloy-Steel Contacts
,”
Tribol. Int.
,
93
, pp.
63
70
. 10.1016/j.triboint.2015.08.009
18.
Luo
,
T.
,
Wei
,
X.
,
Huang
,
X.
,
Huang
,
L.
, and
Yang
,
F.
,
2014
, “
Tribological Properties of Al2O3 Nanoparticles as Lubricating Oil Additives
,”
Ceram. Int.
,
40
(
5
), pp.
7143
7149
. 10.1016/j.ceramint.2013.12.050
19.
Gara
,
L.
, and
Zou
,
Q.
,
2013
, “
Friction and Wear Characteristics of Oil-Based ZnO Nanofluids
,”
Tribol. Trans.
,
56
(
2
), pp.
236
244
. 10.1080/10402004.2012.740148
20.
Peng
,
D. X.
,
Kang
,
Y.
,
Chen
,
S. K.
, and
Chang
,
Y. P.
,
2010
, “
Dispersion and Tribological Properties of Liquid Paraffin With Added Aluminum Nanoparticles
,”
Ind. Lubr. Tribol.
,
62
(
6
), pp.
341
348
. 10.1108/00368791011076236
21.
Suryawanshi
,
S. R.
, and
Pattiwar
,
J. T.
,
2018
, “
Tribological Performance of Commercial Mobil Grade Lubricants Operating With Titanium Dioxide Nanoparticle Additives
,”
Ind. Lubr. Tribol.
,
71
(
2
), pp.
188
198
. 10.1108/ilt-04-2018-0147
22.
Zhou
,
S. Q.
, and
Ni
,
R.
,
2008
, “
Measurement of the Specific Heat Capacity of Water-Based Al2 O3 Nanofluid
,”
Appl. Phys. Lett.
,
92
(
9
), pp.
1
4
. 10.1063/1.2890431
23.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Specific Heat Measurement of Three Nanofluids and Development of New Correlations
,”
ASME J. Heat Transfer
,
131
(
7
), pp.
1
7
. 10.1115/1.3090813
24.
Barbés
,
B.
,
Páramo
,
R.
,
Blanco
,
E.
, and
Casanova
,
C.
,
2014
, “
Thermal Conductivity and Specific Heat Capacity Measurements of CuO Nanofluids
,”
J. Therm. Anal. Calorim.
,
115
(
2
), pp.
1883
1891
. 10.1007/s10973-013-3518-0
25.
Barbés
,
B.
,
Páramo
,
R.
,
Blanco
,
E.
,
Pastoriza-Gallego
,
M. J.
,
Piñeiro
,
M. M.
,
Legido
,
J. L.
, and
Casanova
,
C.
,
2013
, “
Thermal Conductivity and Specific Heat Capacity Measurements of Al 2O3 Nanofluids
,”
J. Therm. Anal. Calorim.
,
111
(
2
), pp.
1615
1625
. 10.1007/s10973-012-2534-9
26.
Chandrasekar
,
M.
,
Suresh
,
S.
, and
Senthilkumar
,
T.
,
2012
, “
Mechanisms Proposed Through Experimental Investigations on Thermophysical Properties and Forced Convective Heat Transfer Characteristics of Various Nanofluids—A Review
,”
Renewable Sustainable Energy Rev.
,
16
(
6
), pp.
3917
3938
. 10.1016/j.rser.2012.03.013
27.
O’Hanley
,
H.
,
Buongiorno
,
J.
,
McKrell
,
T.
, and
Hu
,
L. W.
,
2012
, “
Measurement and Model Validation of Nanofluid Specific Heat Capacity With Differential Scanning Calorimetry
,”
Adv. Mech. Eng.
,
4
, pp.
1
6
. 10.1155/2012/181079
28.
Teng
,
T. P.
, and
Yu
,
C. C.
,
2013
, “
Heat Dissipation Performance of MWCNTs Nano-Coolant for Vehicle
,”
Exp. Therm. Fluid. Sci.
,
49
(
14
), pp.
22
30
. 10.1016/j.expthermflusci.2013.03.007
29.
Pantzali
,
M. N.
,
Kanaris
,
A. G.
,
Antoniadis
,
K. D.
,
Mouza
,
A. A.
, and
Paras
,
S. V.
,
2009
, “
Effect of Nanofluids on the Performance of a Miniature Plate Heat Exchanger With Modulated Surface
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
691
699
. 10.1016/j.ijheatfluidflow.2009.02.005
30.
Murshed
,
S. M. S.
,
2011
, “
Determination of Effective Specific Heat of Nanofluids
,”
J. Exp. Nanosci.
,
6
(
5
), pp.
539
546
. 10.1080/17458080.2010.498838
31.
De Robertis
,
E.
,
Cosme
,
E. H. H.
,
Neves
,
R. S.
,
Kuznetsov
,
A. Y.
,
Campos
,
A. P. C.
,
Landi
,
S. M.
, and
Achete
,
C. A.
,
2012
, “
Application of the Modulated Temperature Differential Scanning Calorimetry Technique for the Determination of the Specific Heat of Copper Nanofluids
,”
Appl. Therm. Eng.
,
41
, pp.
10
17
. 10.1016/j.applthermaleng.2012.01.003
32.
Wang
,
B. X.
,
Zhou
,
L. P.
,
Peng
,
X. F.
,
Du
,
X. Z.
, and
Yang
,
Y. P.
,
2010
, “
On the Specific Heat Capacity of CuO Nanofluid
,”
Adv. Mech. Eng.
,
2
, pp.
1
4
.
33.
Korkmaz
,
Ş
,
2019
,
Nanogümüş Katkılı Kolloidal Süspansiyonların Tribolojik Performanslarının Araştırılması
,
Karabük Üniversitesi
,
Karabük, Turkey
.
34.
Tan
,
G.
,
Onur
,
M. A.
, and
Saǧlam
,
N.
,
2012
, “
Nano Gold and Biomedicine: Scientific Letter
,”
Turkiye Klinikleri J. Med. Sci.
,
32
(
2
), pp.
499
506
. 10.5336/medsci.2010-21147
35.
Zhang
,
X. F.
,
Liu
,
Z. G.
,
Shen
,
W.
, and
Gurunathan
,
S.
,
2016
, “
Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches
,”
Int. J. Mol. Sci.
,
17
(
9
), pp.
1
34
.
36.
Suresh
,
A. K.
,
Pelletier
,
D. A.
,
Wang
,
W.
,
Morrell-Falvey
,
J. L.
,
Gu
,
B.
, and
Doktycz
,
M. J.
,
2012
, “
Cytotoxicity Induced by Engineered Silver Nanocrystallites Is Dependent on Surface Coatings and Cell Types
,”
Langmuir
,
28
(
5
), pp.
2727
2735
. 10.1021/la2042058
37.
Ganguly
,
P.
,
Breen
,
A.
, and
Pillai
,
S. C.
,
2018
, “
Toxicity of Nanomaterials: Exposure, Pathways, Assessment, and Recent Advances
,”
ACS Biomater. Sci. Eng.
,
4
(
7
), pp.
2237
2275
. 10.1021/acsbiomaterials.8b00068
38.
Sivera
,
M.
,
Kvitek
,
L.
,
Soukupova
,
J.
,
Panacek
,
A.
,
Prucek
,
R.
,
Vecerova
,
R.
, and
Zboril
,
R.
,
2014
, “
Silver Nanoparticles Modified by Gelatin With Extraordinary PH Stability and Long-Term Antibacterial Activity
,”
PLoS One
,
9
(
8
), p.
e103675
. 10.1371/journal.pone.0103675
39.
Atay
,
Z.
,
Biver
,
T.
,
Corti
,
A.
,
Eltugral
,
N.
,
Lorenzini
,
E.
,
Masini
,
M.
,
Paolicchi
,
A.
,
Pucci
,
A.
,
Ruggeri
,
G.
,
Secco
,
F.
, and
Venturini
,
M.
,
2010
, “
Non-Covalent Interactions of Cadmium Sulphide and Gold Nanoparticles With DNA
,”
J. Nanopart. Res.
,
12
(
6
), pp.
2241
2253
. 10.1007/s11051-009-9791-y
40.
Eltugral
,
N.
,
Simsir
,
H.
, and
Karagoz
,
S.
,
2016
, “
Preparation of Nano-Silver-Supported Activated Carbon Using Different Ligands
,”
Res. Chem. Intermed.
,
42
(
3
), pp.
1663
1676
. 10.1007/s11164-015-2110-6
41.
Biver
,
T.
,
Eltugral
,
N.
,
Pucci
,
A.
,
Ruggeri
,
G.
,
Schena
,
A.
,
Secco
,
F.
, and
Venturini
,
M.
,
2011
, “
Synthesis, Characterization, DNA Interaction and Potential Applications of Gold Nanoparticles Functionalized With Acridine Orange Fluorophores
,”
Dalton Trans.
,
40
(
16
), pp.
4190
4199
. 10.1039/c0dt01371d
42.
Simsir
,
H.
,
Eltugral
,
N.
, and
Karagoz
,
S.
,
2015
, “
Ligand-Depended Adsorption Characteristics of Silver Nanoparticles on Activated Carbon
,”
Int. J. Chemical Molecular Nuclear Materials Metallurgical Eng.
,
9
(
3
), pp.
471
474
.
43.
Cetin
,
M. H.
, and
Kabave Kilincarslan
,
S.
,
2020
, “
Effects of Cutting Fluids With Nano-Silver and Borax Additives on Milling Performance of Aluminium Alloys
,”
J. Manuf. Processes
,
50
, pp.
170
182
. 10.1016/j.jmapro.2019.12.042
44.
Ghaednia
,
H.
,
Hossain
,
M. S.
, and
Jackson
,
R. L.
,
2016
, “
Tribological Performance of Silver Nanoparticle–Enhanced Polyethylene Glycol Lubricants
,”
Tribol. Trans.
,
59
(
4
), pp.
585
592
. 10.1080/10402004.2015.1092623
45.
Sánchez-López
,
J. C.
,
Abad
,
M. D.
,
Kolodziejczyk
,
L.
,
Guerrero
,
E.
, and
Fernández
,
A.
,
2011
, “
Surface-Modified Pd and Au Nanoparticles for Anti-Wear Applications
,”
Tribol. Int.
,
44
(
6
), pp.
720
726
. 10.1016/j.triboint.2009.12.013
46.
Jatti
,
V. S.
, and
Singh
,
T. P.
,
2015
, “
Copper Oxide Nano-Particles as Friction-Reduction and Anti-Wear Additives in Lubricating Oil
,”
J. Mech. Sci. Technol.
,
29
(
2
), pp.
793
798
. 10.1007/s12206-015-0141-y
47.
Çelik
,
O. N.
,
Ay
,
N.
, and
Göncü
,
Y.
,
2013
, “
Effect of Nano Hexagonal Boron Nitride Lubricant Additives on the Friction and Wear Properties of AISI 4140 Steel
,”
Part. Sci. Technol.
,
31
(
5
), pp.
501
506
. 10.1080/02726351.2013.779336
48.
Neuffer
,
H.
,
Ghaednia
,
H.
, and
Advisor
,
R. J.
,
2014
, “
Wear Volume Analysis Using a Nano-Lubricant for Ball-on-Disk Testing
,”
Tribol. Lubr. Technol.
,
2
, pp.
1
3
.
49.
Zhang
,
Y.
,
Li
,
C.
,
Jia
,
D.
,
Li
,
B.
,
Wang
,
Y.
,
Yang
,
M.
,
Hou
,
Y.
, and
Zhang
,
X.
,
2016
, “
Experimental Study on the Effect of Nanoparticle Concentration on the Lubricating Property of Nanofluids for MQL Grinding of Ni-Based Alloy
,”
J. Mater. Process. Technol.
,
232
, pp.
100
115
. 10.1016/j.jmatprotec.2016.01.031
50.
Thakre
,
A. A.
,
Shinde
,
A.
, and
Mundhe
,
G.
,
2016
, “
Improvement in Boundary Lubrication Characteristics of SAE20W40 Oil Using Aluminum Oxide Nanoparticles
,”
ASME J. Tribol.
,
138
(
3
), pp.
138
141
. 10.1115/1.4031853
51.
Cabaleiro
,
D.
,
Gracia-Fernández
,
C.
,
Legido
,
J. L.
, and
Lugo
,
L.
,
2015
, “
Specific Heat of Metal Oxide Nanofluids at High Concentrations for Heat Transfer
,”
Int. J. Heat Mass Transfer
,
88
, pp.
872
879
. 10.1016/j.ijheatmasstransfer.2015.04.107
52.
Ma
,
J.
,
Mo
,
Y.
, and
Bai
,
M.
,
2009
, “
Effect of Ag Nanoparticles Additive on the Tribological Behavior of Multialkylated Cyclopentanes (MACs)
,”
Wear
,
266
(
7–8
), pp.
627
631
. 10.1016/j.wear.2008.08.006
53.
Chiñas-Castillo
,
F.
,
Lara-Romero
,
J.
, and
Jiménez-Jarquin
,
J. F.
,
2014
, “
Tribological Characteristics of Protected Silver Nanoparticles in Oil
,”
J. Dispersion Sci. Technol.
,
35
(
12
), pp.
1665
1674
. 10.1080/01932691.2013.875922
54.
Yeh
,
Y. C.
,
Creran
,
B.
, and
Rotello
,
V. M.
,
2012
, “
Gold Nanoparticles: Preparation, Properties, and Applications in Bionanotechnology
,”
Nanoscale
,
4
(
6
), pp.
1871
1880
. 10.1039/C1NR11188D
55.
Çengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2015
,
Heat and Mass Transfer: Fundamentals and Applications
,
McGraw-Hill Education
,
New York
.
56.
Callister
,
W. D.
,
2006
,
Materials Science and Engineering. An Introduction
,
Wiley
,
New York
.
57.
Gnecco
,
E.
, and
Meyer
,
E.
,
2015
,
Fundamentals of Friction and Wear on the Nanoscale
,
Springer
,
New York
.
58.
Zhang
,
Z.
,
Patel
,
R. C.
,
Kothari
,
R.
,
Johnson
,
C. P.
,
Friberg
,
S. E.
, and
Aikens
,
P. A.
,
2000
, “
Stable Silver Clusters and Nanoparticles Prepared in Polyacrylate and Inverse Micellar Solutions
,”
J. Phys. Chem. B
,
104
(
6
), pp.
1176
1182
. 10.1021/jp991569t
59.
Andersson
,
M.
,
Pedersen
,
J. S.
, and
Palmqvist
,
A. E. C.
,
2005
, “
Silver Nanoparticle Formation in Microemulsions Acting Both as Template and Reducing Agent
,”
Langmuir
,
21
(
24
), pp.
11387
11396
. 10.1021/la050937j
60.
Uflyand
,
I. E.
,
Zhinzhilo
,
V. A.
, and
Burlakova
,
V. E.
,
2019
, “
Metal-Containing Nanomaterials as Lubricant Additives: State-of-the-Art and Future Development
,”
Friction
,
7
(
2
), pp.
93
116
. 10.1007/s40544-019-0261-y
61.
Kao
,
M. J.
, and
Lin
,
C. R.
,
2009
, “
Evaluating the Role of Spherical Titanium Oxide Nanoparticles in Reducing Friction Between Two Pieces of Cast Iron
,”
J. Alloys Compd.
,
483
(
1–2
), pp.
456
459
. 10.1016/j.jallcom.2008.07.223
62.
Mao
,
C.
,
Huang
,
Y.
,
Zhou
,
X.
,
Gan
,
H.
,
Zhang
,
J.
, and
Zhou
,
Z.
,
2014
, “
The Tribological Properties of Nanofluid Used in Minimum Quantity Lubrication Grinding
,”
Int. J. Adv. Manuf. Technol.
,
71
(
5–8
), pp.
1221
1228
. 10.1007/s00170-013-5576-7
63.
Sharma
,
A. K.
,
Tiwari
,
A. K.
, and
Dixit
,
A. R.
,
2015
, “
Progress of Nanofluid Application in Machining: A Review
,”
Mater. Manuf. Processes
,
30
(
7
), pp.
813
828
. 10.1080/10426914.2014.973583
64.
Dai
,
W.
,
Kheireddin
,
B.
,
Gao
,
H.
, and
Liang
,
H.
,
2016
, “
Roles of Nanoparticles in Oil Lubrication
,”
Tribol. Int.
,
102
, pp.
88
98
. 10.1016/j.triboint.2016.05.020
65.
Subramonian
,
B.
,
Kato
,
K.
,
Adachi
,
K.
, and
Basu
,
B.
,
2005
, “
Experimental Evaluation of Friction and Wear Properties of Solid Lubricant Coatings on SUS440C Steel in Liquid Nitrogen
,”
Tribol. Lett.
,
20
(
3–4
), pp.
263
272
. 10.1007/s11249-005-9066-4
66.
Shi
,
Z. Y.
,
Cui
,
P.
, and
Li
,
X.
,
2019
, “
A Review on Research Progress of Machining Technologies of Carbon Fiber-Reinforced Polymer and Aramid Fiber-Reinforced Polymer
,”
Proc. IME C J. Mech. Eng. Sci.
,
233
(
13
), pp.
4508
4520
. 10.1177/0954406219830732
67.
Cui
,
P.
,
Shi
,
Z. Y.
,
Li
,
X.
, and
Duan
,
N. M.
,
2019
, “
Evaluation of Specific Cutting Energy Considering Effects of Cutting Tool Geometry During Micro-Machining Process
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
1127
1139
. 10.1007/s00170-018-3125-0
68.
Çelebi
,
N.
,
2009
, “
Kolloidler
,”
Modern Farmasötik Teknoloji
,
TEB Eczacılık Akademisi Yayınları
,
Mattek Ltd
.
Şti., Ankara
, p.
263
275
.
You do not currently have access to this content.