Abstract
The wheel-rail contact is an open system contact, which is subjected to various environmental conditions, such as temperature, humidity, water, and even leaves. All these environmental factors influence wheel-rail wear. Classical wheel-rail wear has been extensively studied under dry and clean conditions previously. However, with changes in environmental conditions, the wear rate and wear mechanism can change. This paper reviews recent contributions to wheel-rail wear with a special focus on the influence of environmental conditions. The main part includes the basics of wheel-rail wear, experimental methodology, wear and rolling contact fatigue (RCF), and some measures to counter these degradation mechanisms.
Issue Section:
Review Article
References
1.
Olofsson
, U.
, and Nilsson
, R.
, 2002
, “Surface Cracks and Wear of Rail: A Full-Scale Test on a Commuter Train Track
,” Proc. Inst. Mech. Eng. Part F
, 216
(4
), pp. 249
–264
. 10.1243/0954409023210292082.
Zhu
, Y.
, 2013
, “Adhesion in the Wheel—Rail Contact
,” PhD thesis
, Royal Institute of Technology, KTH
, Stockholm, Sweden
.3.
Lewis
, R.
, and Olofsson
, U.
, 2009
, Wheel-Rail Interface Handbook
, Woodhead Publishing Limited
, Cambridge, UK
.4.
Lewis
, R.
, and Olofsson
, U.
, 2004
, “Mapping Rail Wear Regimes and Transitions
,” Wear
, 257
(7–8
), pp. 721
–729
. 10.1016/j.wear.2004.03.0195.
Nilsson
, R.
, 2005
, “On Wear in Rolling/Sliding Contacts
,” PhD thesis
, KTH Royal Institute of Technology
, Stockholm, Sweden
.6.
Marshall
, M. B.
, Lewis
, R.
, Dwyer-Joyce
, R. S.
, Olofsson
, U.
, and Björklund
, S.
, 2006
, “Experimental Characterization of Wheel-Rail Contact Patch Evolution
,” ASME J. Tribol.
, 128
(3
), pp. 493
–504
. 10.1115/1.21975237.
Zhu
, Y.
, and Olofsson
, U.
, 2014
, “An Adhesion Model for Wheel—Rail Contact at the Micro Level Using Measured 3D Surfaces
,” Wear
, 314
, pp. 162
–170
. 10.1016/j.wear.2013.11.0318.
Zhu
, Y.
, Olofsson
, U.
, and Söderberg
, A.
, 2013
, “Adhesion Modeling in the Wheel–Rail Contact Under Dry and Lubricated Conditions Using Measured 3D Surfaces
,” Tribol. Int.
, 61
, pp. 1
–10
. 10.1016/j.triboint.2012.11.0229.
Vollebregt
, E. A. H.
, 2012
, User Guide for CONTACT, Vollebregt & Kalker’s Rolling and Sliding Contact Model
, Delft, The Netherlands
.10.
Polach
, O.
, 2005
, “Creep Forces in Simulations of Traction Vehicles Running on Adhesion Limit
,” Wear
, 258
(7–8
), pp. 992
–1000
. 10.1016/j.wear.2004.03.04611.
Lewis
, R.
, and Dwyer-Joyce
, R.
, 2004
, “Wear Mechanisms and Transitions in Railway Wheel Steels
,” Proc. Inst. Mech. Eng. Part J
, 218
, pp. 467
–478
. 10.1243/135065004279481512.
Jendel
, T.
, 2002
, “Prediction of Wheel Profile Wear—Comparisons With Field Measurements
,” Wear
, 253
(1–2
), pp. 89
–99
. 10.1016/S0043-1648(02)00087-X13.
Olofsson
, U.
, and Telliskivi
, T.
, 2003
, “Wear, Plastic Deformation and Friction of Two Rail Steels—A Full-Scale Test and a Laboratory Study
,” Wear
, 254
(1–2
), pp. 80
–93
. 10.1016/S0043-1648(02)00291-014.
Cantana
, F.
, 1993
, “Investigation of Wheel FLange Wear on the Santander FEVE Rail—A Case Study
,” Wear
, 162
, pp. 975
–979
. 10.1016/0043-1648(93)90106-v15.
Waara
, P.
, 2000
, “Wear Reduction Performance of Rail FLange Lubrication
,” Licentiate thesis
, Lulea University of Technology
, Luleå, Sweden
.16.
Kalousek
, J.
, and Magel
, E.
, 1997
, “Modifying and Managing Friction
,” Railw. Track Struct.
, pp. 5
–6
.17.
Arias-Cuevas
, O.
, Li
, Z.
, and Lewis
, R.
, 2011
, “A Laboratory Investigation on the Influence of the Particle Size and Slip During Sanding on the Adhesion and Wear in the Wheel–Rail Contact
,” Wear
, 271
(1–2
), pp. 14
–24
. 10.1016/j.wear.2010.10.05018.
Lewis
, R.
, and Dwyer-Joyce
, R. S.
, 2006
, “Wear at the Wheel/Rail Interface When Sanding is Used to Increase Adhesion
,” Proc. Inst. Mech. Eng. Part F
, 220
(1
), pp. 29
–41
. 10.1243/095440905X3326019.
Huang
, W.
, Cao
, X.
, Wen
, Z.
, Wang
, W.
, Qiyue
, L.
, Zhu
, M.
, and Jin
, X.
, 2017
, “A Subscale Experimental Investigation on the Influence of Sanding on Adhesion and Rolling Contact Fatigue of Wheel/Rail Under Water Condition
,” ASME J. Tribol.
, 139
, pp. 1
–8
. 10.1115/1.403310020.
Cao
, X.
, Huang
, W.
, He
, C. G.
, Peng
, J. F.
, Guo
, J.
, Wang
, W. J.
, Liu
, Q. Y.
, and Zhu
, M. H.
, 2016
, “The Effect of Alumina Particle on Improving Adhesion and Wear Damage of Wheel/Rail Under Wet Conditions
,” Wear
, 348–349
, pp. 98
–115
. 10.1016/j.wear.2015.12.00421.
Wang
, W.
, Liu
, T. F.
, Wang
, H. Y.
, Liu
, Q. Y.
, Zhu
, M. H.
, and Jin
, X.
, 2014
, “Influence of Friction Modifiers on Improving Adhesion and Surface Damage of Wheel/Rail Under Low Adhesion Conditions
,” Tribol. Int.
, 75
, pp. 16
–23
. 10.1016/j.triboint.2014.03.00822.
Pombo
, J.
, Ambrósio
, J.
, Pereira
, M.
, Lewis
, R.
, and Caterina
, R. D.
, 2010
, “A Study on Wear Evaluation of Railway Wheels Based on Multibody Dynamics and Wear Computation
,” Multibody Syst. Dyn.
, 24
(3
), pp. 347
–366
. 10.1007/s11044-010-9217-823.
Pombo
, J.
, Ambrósio
, J.
, Pereira
, M.
, Lewis
, R.
, Dwyer-joyce
, R.
, Ariaudo
, C.
, and Kuka
, N.
, 2011
, “Development of a Wear Prediction Tool for Steel Railway Wheels Using Three Alternative Wear Functions
,” Wear
, 271
, pp. 238
–245
. 10.1016/j.wear.2010.10.07224.
Braghin
, F.
, Lewis
, R.
, Dwyer-joyce
, R. S.
, and Bruni
, S.
, 2006
, “A Mathematical Model to Predict Railway Wheel Profile Evolution Due to Wear
,” Wear
, 261
, pp. 1253
–1264
. 10.1016/j.wear.2006.03.02525.
Innocenti
, A.
, Marini
, L.
, Meli
, E.
, Pallini
, G.
, and Rindi
, A.
, 2014
, “Development of a Wear Model for the Analysis of Complex Railway Networks
,” Wear
, 309
(1–2
), pp. 174
–191
. 10.1016/j.wear.2013.11.01026.
Innocenti
, M. I. A.
, and Meli
, L. M. E.
, 2014
, “Development of a Model for the Simultaneous Analysis of Wheel and Rail Wear in Railway Systems
,” Multibody Syst. Dyn.
, 31
(2
), pp. 191
–240
. 10.1007/s11044-013-9360-027.
Archard
, J. F.
, 1953
, “Contact and Rubbing of Flat Surfaces
,” J. Appl. Phys.
, 24
, pp. 981
–988
. 10.1063/1.172144828.
Burstow
, M.
, 2003
, Whole Life Rail Model Application and Development for RSSB: Development of an RCF Damage Parameter. Engineering Research Programme, Rail Safety & Standards Board, 200429.
Magel
, E.
, Kalousek
, J.
, and Sroba
, P.
, 2014
, “Chasing the Magic Wear Rate
,” Proceedings of the Second International Conference on Railway Technology: Research, Development and Maintenance
, Corsica, France
, Apr. 8–11
, pp. 1–16.30.
Rovira
, A.
, Roda
, A.
, Lewis
, R.
, and Marshall
, M. B.
, 2012
, “Application of FASTSIM With Variable Coefficient of Friction Using Twin Disc Experimental Measurements
,” Wear
, 274–275
, pp. 109
–126
. 10.1016/j.wear.2011.08.01931.
Hardwick
, C.
, Lewis
, R.
, and Eadie
, D. T.
, 2014
, “Wheel and Rail Wear—Understanding the Effects of Water and Grease
,” Wear
, 314
(1–2
), pp. 198
–204
. 10.1016/j.wear.2013.11.02032.
Zhu
, Y.
, Sundh
, J.
, and Olofsson
, U.
, 2013
, “A Tribological View of Wheel-Rail Wear Maps
,” Int. J. Railw. Technol.
, 2
(3
), pp. 79
–91
. 10.4203/ijrt.2.3.433.
Sundh
, J.
, Olofsson
, U.
, and Sundvall
, K.
, 2008
, “Seizure and Wear Rate Testing of Wheel–Rail Contacts Under Lubricated Conditions Using Pin-on-Disc Methodology
,” Wear
, 265
(9–10
), pp. 1425
–1430
. 10.1016/j.wear.2008.03.02534.
Sundh
, J.
, and Olofsson
, U.
, 2011
, “Relating Contact Temperature and Wear Transitions in a Wheel–Rail Contact
,” Wear
, 271
(1–2
), pp. 78
–85
. 10.1016/j.wear.2010.10.04635.
Lyu
, Y.
, Zhu
, Y.
, and Olofsson
, U.
, 2015
, “Wear Between Wheel and Rail A Pin-on-Disc Study of Environmental Conditions and Iron Oxides
,” Wear
, 328–329
, pp. 277
–285
. 10.1016/j.wear.2015.02.05736.
Lewis
, S. R.
, Lewis
, R.
, Olofsson
, U.
, Eadie
, D. T.
, Cotter
, J.
, and Lu
, X.
, 2012
, “Effect of Humidity, Temperature and Railhead Contamination on the Performance of Friction Modifiers: Pin-on-Disk Study
,” Proc. Inst. Mech. Eng. Part F
, 227
(2
), pp. 115
–127
. 10.1177/095440971245223937.
Bolton
, P. J.
, Clayton
, P.
, and Railway
, T.
, 1984
, “Rolling-Sliding Wear Damage in Rail and Tyre Steels
,” Wear
, 93
, pp. 145
–165
. 10.1016/0043-1648(84)90066-838.
Krause
, H.
, and Poll
, G.
, 1986
, “Wear of Wheel-Rail Surfaces
,” Wear
, 113
, pp. 103
–122
. 10.1016/0043-1648(86)90060-839.
Garnham
, J. E.
, and Beynon
, J. H.
, 1992
, “Dry Rolling-Sliding Wear of Bainitic and Pearlitic Steels
,” Wear
, 157
(1
), pp. 81
–109
. 10.1016/0043-1648(92)90189-F40.
Wang
, W. J.
, Lewis
, R.
, Yang
, B.
, Guo
, L.
, Liu
, Q.
, and Zhu
, M.
, 2016
, “Wear and Damage Transitions of Wheel and Rail Materials Under Various Contact Conditions
,” Wear
, 362–363
, pp. 146
–152
. 10.1016/j.wear.2016.05.02141.
Kumar
, S.
, and Pransanna
, R. D.
, 1984
, “Wheel-Rail Contact Wear, Work and Lateral Force for Zero Angle of Attack—A Laboratory Study
,” J. Dyn. Syst. Meas. Control
, 106
, pp. 319
–326
. 10.1115/1.314069242.
McEwen
, I. J.
, and Harvey
, R. F.
, 1985
, “Full-Scale Wheel-on-Rail Testing: Comparisons With Service Wear and a Developing Theoretical Predictive Model
,” Lubr. Eng.
, 41
(2
), pp. 80
–88
.43.
Stock
, R.
, Eadie
, D. T.
, and Oldknow
, K.
, 2013
, “Rail Grade Selection and Friction Management: A Combined Approach for Optimising Rail-Wheel Contact
,” Ironmak. Steelmak.
, 40
(2
), pp. 108
–114
. 10.1179/1743281212Y.000000003844.
Stock
, R.
, and Pippan
, R.
, 2011
, “RCF and Wear in Theory and Practice—The Influence of Rail Grade on Wear and RCF
,” Wear
, 271
, pp. 125
–133
. 10.1016/j.wear.2010.10.01545.
Heyder
, R.
, and Maedler
, K.
, 2015
, “The Influence of Wheel and Rail Material on the Wear of the Respective Contact Partner
,” Proceedings of CM2015 10th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems
, Colorado Springs, CO
, Aug. 30–Sept. 3
.46.
Steele
, R. K.
, 1982
, “Observations of In-Service Wear of Railroad Wheels and Rails Under Conditions of Widely Varying Lubrication
,” ASLE Trans.
, 25
(3
), pp. 400
–409
. 10.1080/0569819820898310847.
Dearden
, L.
, 1960
, “The Wear of Steel Rails and Tyres in Railway Service
,” Wear
, 3
, pp. 43
–49
. 10.1016/0043-1648(60)90174-548.
Lewis
, R.
, Magel
, E.
, Wang
, W. J.
, Olofsson
, U.
, Lewis
, S. R.
, Slatter
, T.
, and Beagles
, A.
, 2017
, “Towards a Standard Approach for Wear Testing of Wheel and Rail Materials
,” J. Rail Rapid Transit Proc. IMechE Part F
, 231
(7
), pp. 760
–774
. 10.1177/095440971770053149.
Stock
, R.
, Eadie
, D. T.
, Elvidge
, D.
, and Oldknow
, K.
, 2011
, “Influencing Rolling Contact Fatigue Through Top of Rail Friction Modifier Application—A Full Scale Wheel–Rail Test Rig Study
,” Wear
, 271
(1–2
), pp. 134
–142
. 10.1016/j.wear.2010.10.00650.
Blau
, P.
, 2015
, “How Common Is the Steady-State? The Implications of Wear Transitions for Materials Selection and Design
,” Wear
, 332–333
, pp. 1120
–1128
. 10.1016/j.wear.2014.11.01851.
Lyu
, Y.
, Bergseth
, E.
, and Olofsson
, U.
, 2016
, “Open System Tribology and Influence of Weather Condition
,” Sci. Rep.
, 6
, pp. 1
–11
. 10.1038/s41598-016-0001-852.
Olofsson
, U.
, and Lyu
, Y.
, 2017
, “Open System Tribology in the Wheel—Rail Contact—A Literature Review
,” ASME Appl. Mech. Rev.
, 69
, pp. 1
–10
. 10.1115/1.403822953.
Ma
, L.
, Shi
, L.
, Guo
, J.
, Liu
, Q.
, and Wang
, W.
, 2018
, “On the Wear and Damage Characteristics of Rail Material Under Low Temperature Environment Condition Temperature to Adhesive Wear at Low Temperatures
,” Wear
, 394–395
, pp. 149
–158
. 10.1016/j.wear.2017.10.01154.
Shi
, L.
, Ma
, L.
, Guo
, J.
, Liu
, Q. Y.
, Zhou
, Z. R.
, and Wang
, W.
, 2018
, “Influence of Low Temperature Environment on the Adhesion Characteristics of Wheel-Rail Contact
,” Tribol. Int.
, 127
, pp. 59
–68
. 10.1016/j.triboint.2018.05.03755.
Godfrey
, D.
, 1999
, “Iron Oxides and Rust (Hydrated Iron Oxides) in Tribology
,” J. Soc. Tribol. Lubr. Eng.
, 55
(2
), pp. 33
–37
.56.
Quinn
, T. F.
, 1998
, “Oxidational Wear Modelling Part III. The Effects of Speed and Elevated Temperatures
,” Wear
, 216
, pp. 262
–275
. 10.1016/S0043-1648(98)00137-957.
Quinn
, T. F.
, 2002
, “The Oxidational Wear of Low Alloy Steels
,” Tribol. Int.
, 35
(11
), pp. 691
–715
. 10.1016/S0301-679X(02)00039-758.
Dillmann
, P.
, Mazaudier
, F.
, and Hœrlé
, S.
, 2004
, “Advances in Understanding Atmospheric Corrosion of Iron. I. Rust Characterisation of Ancient Ferrous Artefacts Exposed to Indoor Atmospheric Corrosion
,” Corros. Sci.
, 46
(6
), pp. 1401
–1429
. 10.1016/j.corsci.2003.09.02759.
Kamimura
, T.
, Hara
, S.
, Miyuki
, H.
, Yamashita
, M.
, and Uchida
, H.
, 2006
, “Composition and Protective Ability of Rust Layer Formed on Weathering Steel Exposed to Various Environments
,” Corros. Sci.
, 48
(9
), pp. 2799
–2812
. 10.1016/j.corsci.2005.10.00460.
de la Fuente
, D.
, Díaz
, I.
, Simancas
, J.
, Chico
, B.
, and Morcillo
, M.
, 2011
, “Long-Term Atmospheric Corrosion of Mild Steel
,” Corros. Sci.
, 53
(2
), pp. 604
–617
. 10.1016/j.corsci.2010.10.00761.
Nakahara
, T.
, Baek
, K.-S.
, Chen
, H.
, and Ishida
, M.
, 2011
, “Relationship Between Surface Oxide Layer and Transient Traction Characteristics for Two Steel Rollers Under Unlubricated and Water Lubricated Conditions
,” Wear
, 271
(1–2
), pp. 25
–31
. 10.1016/j.wear.2010.10.03062.
Suzumura
, J.
, Sone
, Y.
, Ishizaki
, A.
, Yamashita
, D.
, Nakajima
, Y.
, and Ishida
, M.
, 2011
, “In Situ X-Ray Analytical Study on the Alteration Process of Iron Oxide Layers at the Railhead Surface While Under Railway Traffic
,” Wear
, 271
(1–2
), pp. 47
–53
. 10.1016/j.wear.2010.10.05463.
Zhu
, Y.
, 2018
, “The Influence of Iron Oxides on Wheel–Rail Contact: A Literature Review
,” Proc. Inst. Mech. Eng. Part F
, 232
(3
), pp. 734
–743
. 10.1177/095440971668918764.
Beagley
, T. M.
, 1976
, “The Rheological Properties of Solid Rail Contaminants and Their Effect on Wheel/Rail Adhesion
,” Proc. Inst. Mech. Eng.
, 190
(39
), pp. 419
–428
. 10.1243/PIME_PROC_1976_190_044_0265.
Beagley
, T.
, McEwen
, I.
, and Pritchard
, C.
, 1975
, “Wheel/Rail Adhesion—The Influence of Railhead Debris
,” Wear
, 33
, pp. 141
–152
. 10.1016/0043-1648(75)90230-666.
Hardwick
, C.
, Lewis
, R.
, and Olofsson
, U.
, 2012
, “Low Adhesion Due to Oxide Formation in the Presence of NaCl
,” Proceedings of 9th International Conference on Contact Mechanics and Wear of Rail/Wheel System
, Chengdu, China
, Aug. 27–30
, pp. 27
–30
.67.
Lu
, X.
, Cotter
, J.
, and Eadie
, D. T.
, 2005
, “Laboratory Study of the Tribological Properties of Friction Modifier Thin Films for Friction Control at the Wheel/Rail Interface
,” Wear
, 259
(7–12
), pp. 1262
–1269
. 10.1016/j.wear.2005.01.01868.
Sone
, Y.
, Suzumura
, J.
, Ban
, T.
, Aoki
, F.
, and Ishida
, M.
, 2008
, “Possibility of In Situ Spectroscopic Analysis for Iron Rust on the Running Band of Rail
,” Wear
, 265
(9–10
), pp. 1396
–1401
. 10.1016/j.wear.2008.02.02769.
Zhu
, Y.
, Olofsson
, U.
, and Chen
, H.
, 2013
, “Friction Between Wheel and Rail: A Pin-On-Disc Study of Environmental Conditions and Iron Oxides
,” Tribol. Lett.
, 52
(2
), pp. 327
–339
. 10.1007/s11249-013-0220-070.
Zhu
, Y.
, Chen
, X.
, Wang
, W.
, and Yang
, H.
, 2015
, “A Study on Iron Oxides and Surface Roughness in Dry and Wet Wheel–Rail Contacts
,” Wear
, 328–329
, pp. 241
–248
. 10.1016/j.wear.2015.02.02571.
Zhu
, Y.
, Yang
, H.
, and Wang
, W.
, 2016
, “Twin-Disc Tests of Iron Oxides in Dry and Wet Wheel-Rail Contacts
,” Proc. Inst. Mech. Eng. Part F
, 230
(4
), pp. 1066
–1076
. 10.1177/095440971557509372.
Zhu
, Y.
, Olofsson
, U.
, and Nilsson
, R.
, 2012
, “A Field Test Study of Leaf Contamination on Railhead Surfaces
,” Proc. Inst. Mech. Eng., Part F
, 228
(1
), pp. 71
–84
. 10.1177/095440971246486073.
Cann
, P. M.
, 2006
, “The ‘Leaves on the Line’ Problem—A Study of Leaf Residue Film Formation and Lubricity Under Laboratory Test Conditions
,” Tribol. Lett.
, 24
(2
), pp. 151
–158
. 10.1007/s11249-006-9152-274.
Wang
, W. J.
, Zhang
, H. F.
, Wang
, H. Y.
, Liu
, Q. Y.
, and Zhu
, M. H.
, 2011
, “Study on the Adhesion Behavior of Wheel/Rail Under Oil, Water and Sanding Conditions
,” Wear
, 271
, pp. 2693
–2698
. 10.1016/j.wear.2010.12.01975.
Li
, Z.
, Arias-Cuevas
, O.
, Lewis
, R.
, and Gallardo-Hernández
, E. A.
, 2008
, “Rolling–Sliding Laboratory Tests of Friction Modifiers in Leaf Contaminated Wheel–Rail Contacts
,” Tribol. Lett.
, 33
(2
), pp. 97
–109
. 10.1007/s11249-008-9393-376.
Arias-Cuevas
, O.
, and Li
, Z.
, 2011
, “Field Investigations Into the Adhesion Recovery in Leaf-Contaminated Wheel-Rail Contacts With Locomotive Sanders
,” Proc. Inst. Mech. Eng. Part F
, 225
(5
), pp. 443
–456
. 10.1177/204130171039492177.
Zhao
, X. J.
, Guo
, J.
, Liu
, Q. Y.
, Butini
, E.
, Marini
, L.
, Meli
, E.
, Rindi
, A.
, and Wang
, W. J.
, 2018
, “Effect of Spherical Dents on Microstructure Evolution and Rolling Contact Fatigue of Wheel/Rail Materials
,” Tribiol. Int.
, 127
, pp. 520
–532
. 10.1016/j.triboint.2018.07.00178.
Tyfour
, W. R.
, and Beynon
, J. H.
, 1994
, “The Effect of Rolling Direction Reversal on Fatigue Crack Morphology and Propagation
,” Tribol. Int.
, 27
(4
), pp. 273
–282
. 10.1016/0301-679X(94)90007-879.
Daves
, W.
, Kubin
, W.
, Scheriau
, S.
, and Pletz
, M.
, 2016
, “A Finite Element Model to Simulate the Physical Mechanisms of Wear and Crack Initiation in Wheel/Rail Contact
,” Wear
, 366–367
, pp. 78
–83
. 10.1016/j.wear.2016.05.02780.
Ma
, L.
, Guo
, J.
, Liu
, Q.
, and Wang
, W.
, 2017
, “Fatigue Crack Growth and Damage Characteristics of High-Speed Rail at Low Ambient Temperature
,” Eng. Fail. Anal.
, 82
, pp. 802
–815
. 10.1016/j.engfailanal.2017.07.02681.
Bevan
, A.
, Molyneux-Berry
, P.
, and Eickhoff
, B.
, 2013
, “Development and Validation of a Wheel Wear and Rolling Contact Fatigue Damage Model
,” Wear
, 307
, pp. 100
–111
. 10.1016/j.wear.2013.08.00482.
Wang
, Y.
, Zhou
, H.
, Shi
, Y.
, and Feng
, B.
, 2012
, “Mechanical Properties and Fracture Toughness of Rail Steels and Thermite Welds at Low Temperature
,” Int. J. Miner. Metall. Mater.
, 19
(5
), pp. 409
–420
. 10.1007/s12613-012-0572-883.
Ekberg
, A.
, and Kabo
, E.
, 2005
, “Fatigue of Railway Wheels and Rails Under Rolling Contact and Thermal Loading—An Overview
,” Wear
, 258
(7–8
) pp. 1288
–1300
. 10.1016/j.wear.2004.03.03984.
Ekberg
, A.
, Åkesson
, B.
, and Kabo
, E.
, 2014
, “Wheel/Rail Rolling Contact Fatigue-Probe, Predict, Prevent
,” Wear
, 314
, pp. 2
–12
. 10.1016/j.wear.2013.12.00485.
Cookson
, J. M.
, and Mutton
, P.
, 2011
, “The Role of the Environment in the Rolling Contact Fatigue Cracking of Rails
,” Wear
, 271
, pp. 113
–119
. 10.1016/j.wear.2010.10.01186.
Steenbergen
, M.
, 2016
, “Rolling Contact Fatigue in Relation to Rail Grinding
,” Wear
, 356–357
, pp. 110
–121
. 10.1016/j.wear.2016.03.01587.
Tyfour
, W. R.
, Beynon
, J. H.
, and Kapoor
, A.
, 1996
, “Deterioration of Rolling Contact Fatigue Life of Pearlitic Rail Steel Due to Dry-Wet Rolling-Sliding Line Contact
,” Wear
, 197
, pp. 255
–265
. 10.1016/0043-1648(96)06978-588.
Zeng
, D. F.
, Lu
, L.
, Gong
, Y. H.
, Zhang
, Y. B.
, and Zhang
, J.
, 2017
, “Influence of Solid Solution Strengthening on Spalling Behavior of Railway Wheel Steel
,” Wear
, 372–373
, pp. 158
–168
. 10.1016/j.wear.2016.12.02589.
Wang
, W. J.
, Lewis
, S. R.
, Lewis
, R.
, Beagles
, A.
, He
, C. G.
, and Liu
, Q. Y.
, 2017
, “The Role of Slip Ratio in Rolling Contact Fatigue of Rail Materials Under Wet Conditions
,” Wear
, 376–377
, pp. 1892
–1900
. 10.1016/j.wear.2016.12.04990.
Bogdański
, S.
, and Lewicki
, P.
, 2008
, “3D Model of Liquid Entrapment Mechanism for Rolling Contact Fatigue Cracks in Rails
,” Wear
, 265
, pp. 1356
–1362
. 10.1016/j.wear.2008.03.01491.
Omastan
, M.
, Machatka
, M.
, and Smejkal
, D.
, 2015
, “Influence of Sanding Parameters on Adhesion Recovery in Contaminated Wheel-Rail Contact
,” Wear
, 322–323
, pp. 218
–225
. 10.1016/j.wear.2014.11.01792.
Franklin
, F. J.
, Weeda
, G.-J.
, Kapoor
, A.
, and Hiensch
, E. J. M.
, 2005
, “Rolling Contact Fatigue and Wear Behaviour of the Infrastar Two-Material Rail
,” Wear
, 258
(7–8
), pp. 1048
–1054
. 10.1016/j.wear.2004.03.05493.
Temple
, P. D.
, Harmon
, M.
, Lewis
, R.
, Burtow
, M. C.
, Temple
, B.
, and Jones
, D.
, 2017
, “Optimization of Grease Application to Railway Track
,” Proc. Inst. Mech. Eng. Part F
, 232
(5
), pp. 1514
–1527
. 10.1177/095440971773468194.
Lewis
, S. R.
, Lewis
, R.
, Evans
, G.
, and Buckley-Johnstone
, L. E.
, 2014
, “Assessment of Railway Curve Lubricant Performance Using a Twin-Disc Tester
,” Wear
, 314
(1–2
), pp. 205
–212
. 10.1016/j.wear.2013.11.03395.
Fletcher
, D. I.
, and Beynon
, J. H.
, 2000
, “The Effect of Intermittent Lubrication on the Fatigue Life of Pearlitic Rail Steel in Rolling/Sliding Contact
,” Proc. Inst. Mech. Eng. Part F
, 214
, pp. 145
–158
. 10.1243/095440900153127096.
Wang
, W.
, Lewis
, R.
, Evans
, M.
, and Liu
, Q.
, 2017
, “Influence of Different Application of Lubricants on Wear and Pre-Existing Rolling Contact Fatigue Cracks of Rail Materials
,” Tribol. Lett.
, 65
(2
), pp. 1
–15
. 10.1007/s11249-017-0841-997.
Hardwick
, C.
, Lewis
, R.
, and Stock
, R.
, 2017
, “The Effects of Friction Management Materials on Rail With Pre Existing RCF Surface Damage
,” Wear
, 384–385
, pp. 50
–60
. 10.1016/j.wear.2017.04.01698.
Burtow
, M. C.
, and Temple
, B.
, 2015
, Wheel/Rail Interaction for Lubrication
. Presented at the Annual V/T SIC Seminar
, RSSB
, London
, October 2015
.99.
Chen
, H.
, Fukagai
, S.
, Sone
, Y.
, Ban
, T.
, and Namura
, A.
, 2014
, “Assessment of Lubricant Applied to Wheel/Rail Interface in Curves
,” Wear
, 314
, pp. 228
–235
. 10.1016/j.wear.2013.12.006100.
Chen
, J.
, Takezono
, S.
, Li
, G.
, and Tanaka
, T.
, 1995
, “Effect of Laser Cladding on Fatigue Strength of an Alloy Steel
,” J. Soc. Mater. Sci. Jpn.
, 44
, pp. 343
–347
. 10.2472/jsms.44.343101.
Sexton
, L.
, Lavin
, S.
, Byrne
, S.
, and Kennedy
, A.
, 2002
, “Laser Cladding of Aerospace Materials
,” J. Mater. Process. Technol.
, 122
, pp. 63
–68
. 10.1016/S0924-0136(01)01121-9102.
Hiensch
, E. J. M.
, Larsson
, P.-O.
, Nilsson
, O.
, Levy
, D.
, Kapoor
, A.
, Franklin
, F.
, Nielsen
, J. C. O.
, Ringsberg
, J. W.
, and Josefson
, B. L.
, 2005
, “Two-Material Rail Development: Field Test Results Regarding Rolling Contact Fatigue and Squeal Noise Behaviour
,” Wear
, 258
, pp. 964
–972
. 10.1016/j.wear.2004.03.067103.
Hiensch
, E. J. M.
, Franklin
, F. J.
, Nielsen
, J. C. O.
, Ringsberg
, J. W.
, Weeda
, G.-J.
, Kapoor
, A.
, and Josefson
, B. L.
, 2003
, “Prevention of RCF Damage in Curved Track Through Development of the Infra-Star Two-Material Rail
,” Fatigue Fract. Eng. Mater. Struct.
, 25
, pp. 1007
–1017
. 10.1046/j.1460-2695.2003.00663.x104.
Ringsberg
, J. W.
, Franklin
, F. J.
, Josefson
, B. L.
, Kapoor
, A.
, and Nielsen
, J. C. O.
, 2005
, “Fatigue Evaluation of Surface Coated Railway Rails Using Shakedown Theory, Finite Element Calculations, and Lab and Field Trials
,” Int. J. Fatigue
, 27
(6
), pp. 680
–694
. 10.1016/j.ijfatigue.2004.11.002105.
Clare
, A. T.
, Oyelola
, O.
, Abioye
, T. E.
, and Farayibi
, P. K.
, 2013
, “Laser Cladding of Rail Steel With Co-Cr Surface Engineering
,” Surf. Eng.
, 29
(10
), pp. 731
–736
. 10.1179/1743294412Y.0000000075106.
Clare
, A.
, Oyelola
, O.
, Folkes
, J.
, and Farayibi
, P.
, 2012
, “Laser Cladding for Railway Repair and Preventative Maintenance
,” J. Laser Appl.
, 24
(3
), p. 032004
. 10.2351/1.4710578107.
Lewis
, S. R.
, Lewis
, R.
, and Fletcher
, D. I.
, 2015
, “Assessment of Laser Cladding as an Option for Repairing/Enhancing Rails
,” Wear
, 330–331
, pp. 581
–591
. 10.1016/j.wear.2015.02.027108.
Lewis
, S. R.
, Fretwell-Smith
, S.
, Goodwin
, P. S.
, Smith
, L.
, Lewis
, R.
, Aslam
, M.
, Fletcher
, D. I.
, Murray
, K.
, and Lambert
, R.
, 2016
, “Improving Rail Wear and RCF Performance Using Laser Cladding
,” Wear
, 366–367
, pp. 268
–278
. 10.1016/j.wear.2016.05.011109.
Fu
, Z. K.
, Ding
, H. H.
, Wang
, W. J.
, Liu
, Q. Y.
, Guo
, J.
, and Zhu
, M. H.
, 2015
, “Investigation on Microstructure and Wear Characteristic of Laser Cladding Fe-Based Alloy on Wheel/Rail Materials
,” Wear
, 330–331
, pp. 592
–599
. 10.1016/j.wear.2015.02.053110.
Wang
, W. J.
, Hu
, J.
, Guo
, J.
, Liu
, Q. Y.
, and Zhu
, M. H.
, 2014
, “Effect of Laser Cladding on Wear and Damage Behaviors of Heavy-Haul Wheel/Rail Materials
,” Wear
, 311
(1–2
), pp. 130
–136
. 10.1016/j.wear.2014.01.011111.
Guo
, H. M.
, Wang
, Q.
, Wang
, W. J.
, Guo
, J.
, Liu
, Q. Y.
, and Zhu
, M. H.
, 2015
, “Investigation on Wear and Damage Performance of Laser Cladding Co-Based Alloy on Single Wheel or Rail Material
,” Wear
, 328–329
, pp. 329
–337
. 10.1016/j.wear.2015.03.002112.
Roy
, T.
, Lai
, Q.
, Abrahams
, R.
, Mutton
, P.
, Paradowska
, A.
, Soodi
, M.
, and Yan
, W.
, 2018
, “Effect of Deposition Material and Heat Treatment on Wear and Rolling Contact Fatigue of Laser Cladded Rails
,” Wear
, 412–413
, pp. 69
–81
. 10.1016/j.wear.2018.07.001113.
Lai
, Q.
, Abrahams
, R.
, Yan
, W.
, Qiu
, C.
, Mutton
, P.
, Paradowska
, A.
, Fang
, X.
, Soodi
, M.
, and Wu
, X.
, 2018
, “Effects of Preheating and Carbon Dilution on Material Characteristics of Laser-Cladded Hypereutectoid Rail Steels
,” Mater. Sci. Eng. A
, 712
, pp. 548
–563
. 10.1016/j.msea.2017.12.003114.
Lai
, Q.
, Abrahams
, R.
, Yan
, W.
, Qiu
, C.
, Mutton
, P.
, Paradowska
, A.
, and Soodi
, M.
, 2017
, “Investigation of a Novel Functionally Graded Material for the Repair of Premium Hypereutectoid Rails Using Laser Cladding Technology
,” Compos. Part B
, 130
, pp. 174
–191
. 10.1016/j.compositesb.2017.07.089115.
Lai
, Q.
, Abrahams
, R.
, Yan
, W.
, Qiu
, C.
, Mutton
, P.
, Paradowska
, A.
, Soodi
, M.
, and Wu
, X.
, 2019
, “Influences of Depositing Materials, Processing Parameters and Heating Conditions on Material Characteristics of Laser-Cladded Hypereutectoid Rails
,” J. Mater. Process. Technol.
, 263
, pp. 1
–20
. 10.1016/j.jmatprotec.2018.07.035116.
Lewis
, S. R.
, Lewis
, R.
, Goodwin
, P. S.
, Fretwell-Smith
, S.
, Fletcher
, D. I.
, Murray
, K.
, and Jaiswal
, J.
, 2017
, “Full-Scale Testing of Laser Clad Railway Track; Case Study—Testing for Wear, Bend Fatigue and Insulated Block Joint Lipping Integrity
,” Wear
, 376–377
, pp. 1930
–1937
. 10.1016/j.wear.2017.02.023117.
Robles Hernández
, F. C.
, Okonkwo
, A. O.
, Kadekar
, V.
, Metz
, T.
, and Badi
, N.
, 2016
, “Laser Cladding: The Alternative for Field Thermite Welds Life Extension
,” Mater. Des.
, 111
, pp. 165
–173
. 10.1016/j.matdes.2016.08.061118.
Pun
, C. L.
, Kan
, Q.
, Mutton
, P.
, Kang
, G.
, and Yan
, W.
, 2015
, “An Efficient Computational Approach to Evaluate the Ratcheting Performance of Rail Steels Under Cyclic Rolling Contact in Service
,” Int. J. Mech. Sci.
, 101–102
, pp. 213
–226
. 10.1016/j.ijmecsci.2015.08.008119.
Pun
, C. L.
, Kan
, Q.
, Mutton
, P.
, Kang
, G.
, and Yan
, W.
, 2014
, “Ratcheting Behaviour of High Strength Rail Steels Under Bi-Axial Compression-Torsion Loadings: Experiment and Simulation
,” Int. J. Fatigue
, 66
, pp. 138
–154
. 10.1016/j.ijfatigue.2014.03.021120.
Zhu
, Y.
, Yang
, Y.
, Mu
, X.
, Wang
, W.
, Yao
, Z.
, and Yang
, H.
, 2019
, “Study on Wear and RCF Performance of Repaired Damage Railway Wheels: Assessing Laser Cladding to Repair Local Defects on Wheels
,” Wear
, 430–431
, pp. 126
–136
. 10.1016/j.wear.2019.04.028Copyright © 2019 by ASME
You do not currently have access to this content.