Abstract

The wheel-rail contact is an open system contact, which is subjected to various environmental conditions, such as temperature, humidity, water, and even leaves. All these environmental factors influence wheel-rail wear. Classical wheel-rail wear has been extensively studied under dry and clean conditions previously. However, with changes in environmental conditions, the wear rate and wear mechanism can change. This paper reviews recent contributions to wheel-rail wear with a special focus on the influence of environmental conditions. The main part includes the basics of wheel-rail wear, experimental methodology, wear and rolling contact fatigue (RCF), and some measures to counter these degradation mechanisms.

References

1.
Olofsson
,
U.
, and
Nilsson
,
R.
,
2002
, “
Surface Cracks and Wear of Rail: A Full-Scale Test on a Commuter Train Track
,”
Proc. Inst. Mech. Eng. Part F
,
216
(
4
), pp.
249
264
. 10.1243/095440902321029208
2.
Zhu
,
Y.
,
2013
, “
Adhesion in the Wheel—Rail Contact
,”
PhD thesis
,
Royal Institute of Technology, KTH
,
Stockholm, Sweden
.
3.
Lewis
,
R.
, and
Olofsson
,
U.
,
2009
,
Wheel-Rail Interface Handbook
,
Woodhead Publishing Limited
,
Cambridge, UK
.
4.
Lewis
,
R.
, and
Olofsson
,
U.
,
2004
, “
Mapping Rail Wear Regimes and Transitions
,”
Wear
,
257
(
7–8
), pp.
721
729
. 10.1016/j.wear.2004.03.019
5.
Nilsson
,
R.
,
2005
, “
On Wear in Rolling/Sliding Contacts
,”
PhD thesis
,
KTH Royal Institute of Technology
,
Stockholm, Sweden
.
6.
Marshall
,
M. B.
,
Lewis
,
R.
,
Dwyer-Joyce
,
R. S.
,
Olofsson
,
U.
, and
Björklund
,
S.
,
2006
, “
Experimental Characterization of Wheel-Rail Contact Patch Evolution
,”
ASME J. Tribol.
,
128
(
3
), pp.
493
504
. 10.1115/1.2197523
7.
Zhu
,
Y.
, and
Olofsson
,
U.
,
2014
, “
An Adhesion Model for Wheel—Rail Contact at the Micro Level Using Measured 3D Surfaces
,”
Wear
,
314
, pp.
162
170
. 10.1016/j.wear.2013.11.031
8.
Zhu
,
Y.
,
Olofsson
,
U.
, and
Söderberg
,
A.
,
2013
, “
Adhesion Modeling in the Wheel–Rail Contact Under Dry and Lubricated Conditions Using Measured 3D Surfaces
,”
Tribol. Int.
,
61
, pp.
1
10
. 10.1016/j.triboint.2012.11.022
9.
Vollebregt
,
E. A. H.
,
2012
,
User Guide for CONTACT, Vollebregt & Kalker’s Rolling and Sliding Contact Model
,
Delft, The Netherlands
.
10.
Polach
,
O.
,
2005
, “
Creep Forces in Simulations of Traction Vehicles Running on Adhesion Limit
,”
Wear
,
258
(
7–8
), pp.
992
1000
. 10.1016/j.wear.2004.03.046
11.
Lewis
,
R.
, and
Dwyer-Joyce
,
R.
,
2004
, “
Wear Mechanisms and Transitions in Railway Wheel Steels
,”
Proc. Inst. Mech. Eng. Part J
,
218
, pp.
467
478
. 10.1243/1350650042794815
12.
Jendel
,
T.
,
2002
, “
Prediction of Wheel Profile Wear—Comparisons With Field Measurements
,”
Wear
,
253
(
1–2
), pp.
89
99
. 10.1016/S0043-1648(02)00087-X
13.
Olofsson
,
U.
, and
Telliskivi
,
T.
,
2003
, “
Wear, Plastic Deformation and Friction of Two Rail Steels—A Full-Scale Test and a Laboratory Study
,”
Wear
,
254
(
1–2
), pp.
80
93
. 10.1016/S0043-1648(02)00291-0
14.
Cantana
,
F.
,
1993
, “
Investigation of Wheel FLange Wear on the Santander FEVE Rail—A Case Study
,”
Wear
,
162
, pp.
975
979
. 10.1016/0043-1648(93)90106-v
15.
Waara
,
P.
,
2000
, “
Wear Reduction Performance of Rail FLange Lubrication
,”
Licentiate thesis
,
Lulea University of Technology
,
Luleå, Sweden
.
16.
Kalousek
,
J.
, and
Magel
,
E.
,
1997
, “
Modifying and Managing Friction
,”
Railw. Track Struct.
, pp.
5
6
.
17.
Arias-Cuevas
,
O.
,
Li
,
Z.
, and
Lewis
,
R.
,
2011
, “
A Laboratory Investigation on the Influence of the Particle Size and Slip During Sanding on the Adhesion and Wear in the Wheel–Rail Contact
,”
Wear
,
271
(
1–2
), pp.
14
24
. 10.1016/j.wear.2010.10.050
18.
Lewis
,
R.
, and
Dwyer-Joyce
,
R. S.
,
2006
, “
Wear at the Wheel/Rail Interface When Sanding is Used to Increase Adhesion
,”
Proc. Inst. Mech. Eng. Part F
,
220
(
1
), pp.
29
41
. 10.1243/095440905X33260
19.
Huang
,
W.
,
Cao
,
X.
,
Wen
,
Z.
,
Wang
,
W.
,
Qiyue
,
L.
,
Zhu
,
M.
, and
Jin
,
X.
,
2017
, “
A Subscale Experimental Investigation on the Influence of Sanding on Adhesion and Rolling Contact Fatigue of Wheel/Rail Under Water Condition
,”
ASME J. Tribol.
,
139
, pp.
1
8
. 10.1115/1.4033100
20.
Cao
,
X.
,
Huang
,
W.
,
He
,
C. G.
,
Peng
,
J. F.
,
Guo
,
J.
,
Wang
,
W. J.
,
Liu
,
Q. Y.
, and
Zhu
,
M. H.
,
2016
, “
The Effect of Alumina Particle on Improving Adhesion and Wear Damage of Wheel/Rail Under Wet Conditions
,”
Wear
,
348–349
, pp.
98
115
. 10.1016/j.wear.2015.12.004
21.
Wang
,
W.
,
Liu
,
T. F.
,
Wang
,
H. Y.
,
Liu
,
Q. Y.
,
Zhu
,
M. H.
, and
Jin
,
X.
,
2014
, “
Influence of Friction Modifiers on Improving Adhesion and Surface Damage of Wheel/Rail Under Low Adhesion Conditions
,”
Tribol. Int.
,
75
, pp.
16
23
. 10.1016/j.triboint.2014.03.008
22.
Pombo
,
J.
,
Ambrósio
,
J.
,
Pereira
,
M.
,
Lewis
,
R.
, and
Caterina
,
R. D.
,
2010
, “
A Study on Wear Evaluation of Railway Wheels Based on Multibody Dynamics and Wear Computation
,”
Multibody Syst. Dyn.
,
24
(
3
), pp.
347
366
. 10.1007/s11044-010-9217-8
23.
Pombo
,
J.
,
Ambrósio
,
J.
,
Pereira
,
M.
,
Lewis
,
R.
,
Dwyer-joyce
,
R.
,
Ariaudo
,
C.
, and
Kuka
,
N.
,
2011
, “
Development of a Wear Prediction Tool for Steel Railway Wheels Using Three Alternative Wear Functions
,”
Wear
,
271
, pp.
238
245
. 10.1016/j.wear.2010.10.072
24.
Braghin
,
F.
,
Lewis
,
R.
,
Dwyer-joyce
,
R. S.
, and
Bruni
,
S.
,
2006
, “
A Mathematical Model to Predict Railway Wheel Profile Evolution Due to Wear
,”
Wear
,
261
, pp.
1253
1264
. 10.1016/j.wear.2006.03.025
25.
Innocenti
,
A.
,
Marini
,
L.
,
Meli
,
E.
,
Pallini
,
G.
, and
Rindi
,
A.
,
2014
, “
Development of a Wear Model for the Analysis of Complex Railway Networks
,”
Wear
,
309
(
1–2
), pp.
174
191
. 10.1016/j.wear.2013.11.010
26.
Innocenti
,
M. I. A.
, and
Meli
,
L. M. E.
,
2014
, “
Development of a Model for the Simultaneous Analysis of Wheel and Rail Wear in Railway Systems
,”
Multibody Syst. Dyn.
,
31
(
2
), pp.
191
240
. 10.1007/s11044-013-9360-0
27.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
, pp.
981
988
. 10.1063/1.1721448
28.
Burstow
,
M.
,
2003
, Whole Life Rail Model Application and Development for RSSB: Development of an RCF Damage Parameter. Engineering Research Programme, Rail Safety & Standards Board, 2004
29.
Magel
,
E.
,
Kalousek
,
J.
, and
Sroba
,
P.
,
2014
, “
Chasing the Magic Wear Rate
,”
Proceedings of the Second International Conference on Railway Technology: Research, Development and Maintenance
,
Corsica, France
,
Apr. 8–11
, pp. 1–16.
30.
Rovira
,
A.
,
Roda
,
A.
,
Lewis
,
R.
, and
Marshall
,
M. B.
,
2012
, “
Application of FASTSIM With Variable Coefficient of Friction Using Twin Disc Experimental Measurements
,”
Wear
,
274–275
, pp.
109
126
. 10.1016/j.wear.2011.08.019
31.
Hardwick
,
C.
,
Lewis
,
R.
, and
Eadie
,
D. T.
,
2014
, “
Wheel and Rail Wear—Understanding the Effects of Water and Grease
,”
Wear
,
314
(
1–2
), pp.
198
204
. 10.1016/j.wear.2013.11.020
32.
Zhu
,
Y.
,
Sundh
,
J.
, and
Olofsson
,
U.
,
2013
, “
A Tribological View of Wheel-Rail Wear Maps
,”
Int. J. Railw. Technol.
,
2
(
3
), pp.
79
91
. 10.4203/ijrt.2.3.4
33.
Sundh
,
J.
,
Olofsson
,
U.
, and
Sundvall
,
K.
,
2008
, “
Seizure and Wear Rate Testing of Wheel–Rail Contacts Under Lubricated Conditions Using Pin-on-Disc Methodology
,”
Wear
,
265
(
9–10
), pp.
1425
1430
. 10.1016/j.wear.2008.03.025
34.
Sundh
,
J.
, and
Olofsson
,
U.
,
2011
, “
Relating Contact Temperature and Wear Transitions in a Wheel–Rail Contact
,”
Wear
,
271
(
1–2
), pp.
78
85
. 10.1016/j.wear.2010.10.046
35.
Lyu
,
Y.
,
Zhu
,
Y.
, and
Olofsson
,
U.
,
2015
, “
Wear Between Wheel and Rail A Pin-on-Disc Study of Environmental Conditions and Iron Oxides
,”
Wear
,
328–329
, pp.
277
285
. 10.1016/j.wear.2015.02.057
36.
Lewis
,
S. R.
,
Lewis
,
R.
,
Olofsson
,
U.
,
Eadie
,
D. T.
,
Cotter
,
J.
, and
Lu
,
X.
,
2012
, “
Effect of Humidity, Temperature and Railhead Contamination on the Performance of Friction Modifiers: Pin-on-Disk Study
,”
Proc. Inst. Mech. Eng. Part F
,
227
(
2
), pp.
115
127
. 10.1177/0954409712452239
37.
Bolton
,
P. J.
,
Clayton
,
P.
, and
Railway
,
T.
,
1984
, “
Rolling-Sliding Wear Damage in Rail and Tyre Steels
,”
Wear
,
93
, pp.
145
165
. 10.1016/0043-1648(84)90066-8
38.
Krause
,
H.
, and
Poll
,
G.
,
1986
, “
Wear of Wheel-Rail Surfaces
,”
Wear
,
113
, pp.
103
122
. 10.1016/0043-1648(86)90060-8
39.
Garnham
,
J. E.
, and
Beynon
,
J. H.
,
1992
, “
Dry Rolling-Sliding Wear of Bainitic and Pearlitic Steels
,”
Wear
,
157
(
1
), pp.
81
109
. 10.1016/0043-1648(92)90189-F
40.
Wang
,
W. J.
,
Lewis
,
R.
,
Yang
,
B.
,
Guo
,
L.
,
Liu
,
Q.
, and
Zhu
,
M.
,
2016
, “
Wear and Damage Transitions of Wheel and Rail Materials Under Various Contact Conditions
,”
Wear
,
362–363
, pp.
146
152
. 10.1016/j.wear.2016.05.021
41.
Kumar
,
S.
, and
Pransanna
,
R. D.
,
1984
, “
Wheel-Rail Contact Wear, Work and Lateral Force for Zero Angle of Attack—A Laboratory Study
,”
J. Dyn. Syst. Meas. Control
,
106
, pp.
319
326
. 10.1115/1.3140692
42.
McEwen
,
I. J.
, and
Harvey
,
R. F.
,
1985
, “
Full-Scale Wheel-on-Rail Testing: Comparisons With Service Wear and a Developing Theoretical Predictive Model
,”
Lubr. Eng.
,
41
(
2
), pp.
80
88
.
43.
Stock
,
R.
,
Eadie
,
D. T.
, and
Oldknow
,
K.
,
2013
, “
Rail Grade Selection and Friction Management: A Combined Approach for Optimising Rail-Wheel Contact
,”
Ironmak. Steelmak.
,
40
(
2
), pp.
108
114
. 10.1179/1743281212Y.0000000038
44.
Stock
,
R.
, and
Pippan
,
R.
,
2011
, “
RCF and Wear in Theory and Practice—The Influence of Rail Grade on Wear and RCF
,”
Wear
,
271
, pp.
125
133
. 10.1016/j.wear.2010.10.015
45.
Heyder
,
R.
, and
Maedler
,
K.
,
2015
, “
The Influence of Wheel and Rail Material on the Wear of the Respective Contact Partner
,”
Proceedings of CM2015 10th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems
,
Colorado Springs, CO
,
Aug. 30–Sept. 3
.
46.
Steele
,
R. K.
,
1982
, “
Observations of In-Service Wear of Railroad Wheels and Rails Under Conditions of Widely Varying Lubrication
,”
ASLE Trans.
,
25
(
3
), pp.
400
409
. 10.1080/05698198208983108
47.
Dearden
,
L.
,
1960
, “
The Wear of Steel Rails and Tyres in Railway Service
,”
Wear
,
3
, pp.
43
49
. 10.1016/0043-1648(60)90174-5
48.
Lewis
,
R.
,
Magel
,
E.
,
Wang
,
W. J.
,
Olofsson
,
U.
,
Lewis
,
S. R.
,
Slatter
,
T.
, and
Beagles
,
A.
,
2017
, “
Towards a Standard Approach for Wear Testing of Wheel and Rail Materials
,”
J. Rail Rapid Transit Proc. IMechE Part F
,
231
(
7
), pp.
760
774
. 10.1177/0954409717700531
49.
Stock
,
R.
,
Eadie
,
D. T.
,
Elvidge
,
D.
, and
Oldknow
,
K.
,
2011
, “
Influencing Rolling Contact Fatigue Through Top of Rail Friction Modifier Application—A Full Scale Wheel–Rail Test Rig Study
,”
Wear
,
271
(
1–2
), pp.
134
142
. 10.1016/j.wear.2010.10.006
50.
Blau
,
P.
,
2015
, “
How Common Is the Steady-State? The Implications of Wear Transitions for Materials Selection and Design
,”
Wear
,
332–333
, pp.
1120
1128
. 10.1016/j.wear.2014.11.018
51.
Lyu
,
Y.
,
Bergseth
,
E.
, and
Olofsson
,
U.
,
2016
, “
Open System Tribology and Influence of Weather Condition
,”
Sci. Rep.
,
6
, pp.
1
11
. 10.1038/s41598-016-0001-8
52.
Olofsson
,
U.
, and
Lyu
,
Y.
,
2017
, “
Open System Tribology in the Wheel—Rail Contact—A Literature Review
,”
ASME Appl. Mech. Rev.
,
69
, pp.
1
10
. 10.1115/1.4038229
53.
Ma
,
L.
,
Shi
,
L.
,
Guo
,
J.
,
Liu
,
Q.
, and
Wang
,
W.
,
2018
, “
On the Wear and Damage Characteristics of Rail Material Under Low Temperature Environment Condition Temperature to Adhesive Wear at Low Temperatures
,”
Wear
,
394–395
, pp.
149
158
. 10.1016/j.wear.2017.10.011
54.
Shi
,
L.
,
Ma
,
L.
,
Guo
,
J.
,
Liu
,
Q. Y.
,
Zhou
,
Z. R.
, and
Wang
,
W.
,
2018
, “
Influence of Low Temperature Environment on the Adhesion Characteristics of Wheel-Rail Contact
,”
Tribol. Int.
,
127
, pp.
59
68
. 10.1016/j.triboint.2018.05.037
55.
Godfrey
,
D.
,
1999
, “
Iron Oxides and Rust (Hydrated Iron Oxides) in Tribology
,”
J. Soc. Tribol. Lubr. Eng.
,
55
(
2
), pp.
33
37
.
56.
Quinn
,
T. F.
,
1998
, “
Oxidational Wear Modelling Part III. The Effects of Speed and Elevated Temperatures
,”
Wear
,
216
, pp.
262
275
. 10.1016/S0043-1648(98)00137-9
57.
Quinn
,
T. F.
,
2002
, “
The Oxidational Wear of Low Alloy Steels
,”
Tribol. Int.
,
35
(
11
), pp.
691
715
. 10.1016/S0301-679X(02)00039-7
58.
Dillmann
,
P.
,
Mazaudier
,
F.
, and
Hœrlé
,
S.
,
2004
, “
Advances in Understanding Atmospheric Corrosion of Iron. I. Rust Characterisation of Ancient Ferrous Artefacts Exposed to Indoor Atmospheric Corrosion
,”
Corros. Sci.
,
46
(
6
), pp.
1401
1429
. 10.1016/j.corsci.2003.09.027
59.
Kamimura
,
T.
,
Hara
,
S.
,
Miyuki
,
H.
,
Yamashita
,
M.
, and
Uchida
,
H.
,
2006
, “
Composition and Protective Ability of Rust Layer Formed on Weathering Steel Exposed to Various Environments
,”
Corros. Sci.
,
48
(
9
), pp.
2799
2812
. 10.1016/j.corsci.2005.10.004
60.
de la Fuente
,
D.
,
Díaz
,
I.
,
Simancas
,
J.
,
Chico
,
B.
, and
Morcillo
,
M.
,
2011
, “
Long-Term Atmospheric Corrosion of Mild Steel
,”
Corros. Sci.
,
53
(
2
), pp.
604
617
. 10.1016/j.corsci.2010.10.007
61.
Nakahara
,
T.
,
Baek
,
K.-S.
,
Chen
,
H.
, and
Ishida
,
M.
,
2011
, “
Relationship Between Surface Oxide Layer and Transient Traction Characteristics for Two Steel Rollers Under Unlubricated and Water Lubricated Conditions
,”
Wear
,
271
(
1–2
), pp.
25
31
. 10.1016/j.wear.2010.10.030
62.
Suzumura
,
J.
,
Sone
,
Y.
,
Ishizaki
,
A.
,
Yamashita
,
D.
,
Nakajima
,
Y.
, and
Ishida
,
M.
,
2011
, “
In Situ X-Ray Analytical Study on the Alteration Process of Iron Oxide Layers at the Railhead Surface While Under Railway Traffic
,”
Wear
,
271
(
1–2
), pp.
47
53
. 10.1016/j.wear.2010.10.054
63.
Zhu
,
Y.
,
2018
, “
The Influence of Iron Oxides on Wheel–Rail Contact: A Literature Review
,”
Proc. Inst. Mech. Eng. Part F
,
232
(
3
), pp.
734
743
. 10.1177/0954409716689187
64.
Beagley
,
T. M.
,
1976
, “
The Rheological Properties of Solid Rail Contaminants and Their Effect on Wheel/Rail Adhesion
,”
Proc. Inst. Mech. Eng.
,
190
(
39
), pp.
419
428
. 10.1243/PIME_PROC_1976_190_044_02
65.
Beagley
,
T.
,
McEwen
,
I.
, and
Pritchard
,
C.
,
1975
, “
Wheel/Rail Adhesion—The Influence of Railhead Debris
,”
Wear
,
33
, pp.
141
152
. 10.1016/0043-1648(75)90230-6
66.
Hardwick
,
C.
,
Lewis
,
R.
, and
Olofsson
,
U.
,
2012
, “
Low Adhesion Due to Oxide Formation in the Presence of NaCl
,”
Proceedings of 9th International Conference on Contact Mechanics and Wear of Rail/Wheel System
,
Chengdu, China
,
Aug. 27–30
, pp.
27
30
.
67.
Lu
,
X.
,
Cotter
,
J.
, and
Eadie
,
D. T.
,
2005
, “
Laboratory Study of the Tribological Properties of Friction Modifier Thin Films for Friction Control at the Wheel/Rail Interface
,”
Wear
,
259
(
7–12
), pp.
1262
1269
. 10.1016/j.wear.2005.01.018
68.
Sone
,
Y.
,
Suzumura
,
J.
,
Ban
,
T.
,
Aoki
,
F.
, and
Ishida
,
M.
,
2008
, “
Possibility of In Situ Spectroscopic Analysis for Iron Rust on the Running Band of Rail
,”
Wear
,
265
(
9–10
), pp.
1396
1401
. 10.1016/j.wear.2008.02.027
69.
Zhu
,
Y.
,
Olofsson
,
U.
, and
Chen
,
H.
,
2013
, “
Friction Between Wheel and Rail: A Pin-On-Disc Study of Environmental Conditions and Iron Oxides
,”
Tribol. Lett.
,
52
(
2
), pp.
327
339
. 10.1007/s11249-013-0220-0
70.
Zhu
,
Y.
,
Chen
,
X.
,
Wang
,
W.
, and
Yang
,
H.
,
2015
, “
A Study on Iron Oxides and Surface Roughness in Dry and Wet Wheel–Rail Contacts
,”
Wear
,
328–329
, pp.
241
248
. 10.1016/j.wear.2015.02.025
71.
Zhu
,
Y.
,
Yang
,
H.
, and
Wang
,
W.
,
2016
, “
Twin-Disc Tests of Iron Oxides in Dry and Wet Wheel-Rail Contacts
,”
Proc. Inst. Mech. Eng. Part F
,
230
(
4
), pp.
1066
1076
. 10.1177/0954409715575093
72.
Zhu
,
Y.
,
Olofsson
,
U.
, and
Nilsson
,
R.
,
2012
, “
A Field Test Study of Leaf Contamination on Railhead Surfaces
,”
Proc. Inst. Mech. Eng., Part F
,
228
(
1
), pp.
71
84
. 10.1177/0954409712464860
73.
Cann
,
P. M.
,
2006
, “
The ‘Leaves on the Line’ Problem—A Study of Leaf Residue Film Formation and Lubricity Under Laboratory Test Conditions
,”
Tribol. Lett.
,
24
(
2
), pp.
151
158
. 10.1007/s11249-006-9152-2
74.
Wang
,
W. J.
,
Zhang
,
H. F.
,
Wang
,
H. Y.
,
Liu
,
Q. Y.
, and
Zhu
,
M. H.
,
2011
, “
Study on the Adhesion Behavior of Wheel/Rail Under Oil, Water and Sanding Conditions
,”
Wear
,
271
, pp.
2693
2698
. 10.1016/j.wear.2010.12.019
75.
Li
,
Z.
,
Arias-Cuevas
,
O.
,
Lewis
,
R.
, and
Gallardo-Hernández
,
E. A.
,
2008
, “
Rolling–Sliding Laboratory Tests of Friction Modifiers in Leaf Contaminated Wheel–Rail Contacts
,”
Tribol. Lett.
,
33
(
2
), pp.
97
109
. 10.1007/s11249-008-9393-3
76.
Arias-Cuevas
,
O.
, and
Li
,
Z.
,
2011
, “
Field Investigations Into the Adhesion Recovery in Leaf-Contaminated Wheel-Rail Contacts With Locomotive Sanders
,”
Proc. Inst. Mech. Eng. Part F
,
225
(
5
), pp.
443
456
. 10.1177/2041301710394921
77.
Zhao
,
X. J.
,
Guo
,
J.
,
Liu
,
Q. Y.
,
Butini
,
E.
,
Marini
,
L.
,
Meli
,
E.
,
Rindi
,
A.
, and
Wang
,
W. J.
,
2018
, “
Effect of Spherical Dents on Microstructure Evolution and Rolling Contact Fatigue of Wheel/Rail Materials
,”
Tribiol. Int.
,
127
, pp.
520
532
. 10.1016/j.triboint.2018.07.001
78.
Tyfour
,
W. R.
, and
Beynon
,
J. H.
,
1994
, “
The Effect of Rolling Direction Reversal on Fatigue Crack Morphology and Propagation
,”
Tribol. Int.
,
27
(
4
), pp.
273
282
. 10.1016/0301-679X(94)90007-8
79.
Daves
,
W.
,
Kubin
,
W.
,
Scheriau
,
S.
, and
Pletz
,
M.
,
2016
, “
A Finite Element Model to Simulate the Physical Mechanisms of Wear and Crack Initiation in Wheel/Rail Contact
,”
Wear
,
366–367
, pp.
78
83
. 10.1016/j.wear.2016.05.027
80.
Ma
,
L.
,
Guo
,
J.
,
Liu
,
Q.
, and
Wang
,
W.
,
2017
, “
Fatigue Crack Growth and Damage Characteristics of High-Speed Rail at Low Ambient Temperature
,”
Eng. Fail. Anal.
,
82
, pp.
802
815
. 10.1016/j.engfailanal.2017.07.026
81.
Bevan
,
A.
,
Molyneux-Berry
,
P.
, and
Eickhoff
,
B.
,
2013
, “
Development and Validation of a Wheel Wear and Rolling Contact Fatigue Damage Model
,”
Wear
,
307
, pp.
100
111
. 10.1016/j.wear.2013.08.004
82.
Wang
,
Y.
,
Zhou
,
H.
,
Shi
,
Y.
, and
Feng
,
B.
,
2012
, “
Mechanical Properties and Fracture Toughness of Rail Steels and Thermite Welds at Low Temperature
,”
Int. J. Miner. Metall. Mater.
,
19
(
5
), pp.
409
420
. 10.1007/s12613-012-0572-8
83.
Ekberg
,
A.
, and
Kabo
,
E.
,
2005
, “
Fatigue of Railway Wheels and Rails Under Rolling Contact and Thermal Loading—An Overview
,”
Wear
,
258
(
7–8
) pp.
1288
1300
. 10.1016/j.wear.2004.03.039
84.
Ekberg
,
A.
,
Åkesson
,
B.
, and
Kabo
,
E.
,
2014
, “
Wheel/Rail Rolling Contact Fatigue-Probe, Predict, Prevent
,”
Wear
,
314
, pp.
2
12
. 10.1016/j.wear.2013.12.004
85.
Cookson
,
J. M.
, and
Mutton
,
P.
,
2011
, “
The Role of the Environment in the Rolling Contact Fatigue Cracking of Rails
,”
Wear
,
271
, pp.
113
119
. 10.1016/j.wear.2010.10.011
86.
Steenbergen
,
M.
,
2016
, “
Rolling Contact Fatigue in Relation to Rail Grinding
,”
Wear
,
356–357
, pp.
110
121
. 10.1016/j.wear.2016.03.015
87.
Tyfour
,
W. R.
,
Beynon
,
J. H.
, and
Kapoor
,
A.
,
1996
, “
Deterioration of Rolling Contact Fatigue Life of Pearlitic Rail Steel Due to Dry-Wet Rolling-Sliding Line Contact
,”
Wear
,
197
, pp.
255
265
. 10.1016/0043-1648(96)06978-5
88.
Zeng
,
D. F.
,
Lu
,
L.
,
Gong
,
Y. H.
,
Zhang
,
Y. B.
, and
Zhang
,
J.
,
2017
, “
Influence of Solid Solution Strengthening on Spalling Behavior of Railway Wheel Steel
,”
Wear
,
372–373
, pp.
158
168
. 10.1016/j.wear.2016.12.025
89.
Wang
,
W. J.
,
Lewis
,
S. R.
,
Lewis
,
R.
,
Beagles
,
A.
,
He
,
C. G.
, and
Liu
,
Q. Y.
,
2017
, “
The Role of Slip Ratio in Rolling Contact Fatigue of Rail Materials Under Wet Conditions
,”
Wear
,
376–377
, pp.
1892
1900
. 10.1016/j.wear.2016.12.049
90.
Bogdański
,
S.
, and
Lewicki
,
P.
,
2008
, “
3D Model of Liquid Entrapment Mechanism for Rolling Contact Fatigue Cracks in Rails
,”
Wear
,
265
, pp.
1356
1362
. 10.1016/j.wear.2008.03.014
91.
Omastan
,
M.
,
Machatka
,
M.
, and
Smejkal
,
D.
,
2015
, “
Influence of Sanding Parameters on Adhesion Recovery in Contaminated Wheel-Rail Contact
,”
Wear
,
322–323
, pp.
218
225
. 10.1016/j.wear.2014.11.017
92.
Franklin
,
F. J.
,
Weeda
,
G.-J.
,
Kapoor
,
A.
, and
Hiensch
,
E. J. M.
,
2005
, “
Rolling Contact Fatigue and Wear Behaviour of the Infrastar Two-Material Rail
,”
Wear
,
258
(
7–8
), pp.
1048
1054
. 10.1016/j.wear.2004.03.054
93.
Temple
,
P. D.
,
Harmon
,
M.
,
Lewis
,
R.
,
Burtow
,
M. C.
,
Temple
,
B.
, and
Jones
,
D.
,
2017
, “
Optimization of Grease Application to Railway Track
,”
Proc. Inst. Mech. Eng. Part F
,
232
(
5
), pp.
1514
1527
. 10.1177/0954409717734681
94.
Lewis
,
S. R.
,
Lewis
,
R.
,
Evans
,
G.
, and
Buckley-Johnstone
,
L. E.
,
2014
, “
Assessment of Railway Curve Lubricant Performance Using a Twin-Disc Tester
,”
Wear
,
314
(
1–2
), pp.
205
212
. 10.1016/j.wear.2013.11.033
95.
Fletcher
,
D. I.
, and
Beynon
,
J. H.
,
2000
, “
The Effect of Intermittent Lubrication on the Fatigue Life of Pearlitic Rail Steel in Rolling/Sliding Contact
,”
Proc. Inst. Mech. Eng. Part F
,
214
, pp.
145
158
. 10.1243/0954409001531270
96.
Wang
,
W.
,
Lewis
,
R.
,
Evans
,
M.
, and
Liu
,
Q.
,
2017
, “
Influence of Different Application of Lubricants on Wear and Pre-Existing Rolling Contact Fatigue Cracks of Rail Materials
,”
Tribol. Lett.
,
65
(
2
), pp.
1
15
. 10.1007/s11249-017-0841-9
97.
Hardwick
,
C.
,
Lewis
,
R.
, and
Stock
,
R.
,
2017
, “
The Effects of Friction Management Materials on Rail With Pre Existing RCF Surface Damage
,”
Wear
,
384–385
, pp.
50
60
. 10.1016/j.wear.2017.04.016
98.
Burtow
,
M. C.
, and
Temple
,
B.
,
2015
,
Wheel/Rail Interaction for Lubrication
.
Presented at the Annual V/T SIC Seminar
,
RSSB
,
London
,
October 2015
.
99.
Chen
,
H.
,
Fukagai
,
S.
,
Sone
,
Y.
,
Ban
,
T.
, and
Namura
,
A.
,
2014
, “
Assessment of Lubricant Applied to Wheel/Rail Interface in Curves
,”
Wear
,
314
, pp.
228
235
. 10.1016/j.wear.2013.12.006
100.
Chen
,
J.
,
Takezono
,
S.
,
Li
,
G.
, and
Tanaka
,
T.
,
1995
, “
Effect of Laser Cladding on Fatigue Strength of an Alloy Steel
,”
J. Soc. Mater. Sci. Jpn.
,
44
, pp.
343
347
. 10.2472/jsms.44.343
101.
Sexton
,
L.
,
Lavin
,
S.
,
Byrne
,
S.
, and
Kennedy
,
A.
,
2002
, “
Laser Cladding of Aerospace Materials
,”
J. Mater. Process. Technol.
,
122
, pp.
63
68
. 10.1016/S0924-0136(01)01121-9
102.
Hiensch
,
E. J. M.
,
Larsson
,
P.-O.
,
Nilsson
,
O.
,
Levy
,
D.
,
Kapoor
,
A.
,
Franklin
,
F.
,
Nielsen
,
J. C. O.
,
Ringsberg
,
J. W.
, and
Josefson
,
B. L.
,
2005
, “
Two-Material Rail Development: Field Test Results Regarding Rolling Contact Fatigue and Squeal Noise Behaviour
,”
Wear
,
258
, pp.
964
972
. 10.1016/j.wear.2004.03.067
103.
Hiensch
,
E. J. M.
,
Franklin
,
F. J.
,
Nielsen
,
J. C. O.
,
Ringsberg
,
J. W.
,
Weeda
,
G.-J.
,
Kapoor
,
A.
, and
Josefson
,
B. L.
,
2003
, “
Prevention of RCF Damage in Curved Track Through Development of the Infra-Star Two-Material Rail
,”
Fatigue Fract. Eng. Mater. Struct.
,
25
, pp.
1007
1017
. 10.1046/j.1460-2695.2003.00663.x
104.
Ringsberg
,
J. W.
,
Franklin
,
F. J.
,
Josefson
,
B. L.
,
Kapoor
,
A.
, and
Nielsen
,
J. C. O.
,
2005
, “
Fatigue Evaluation of Surface Coated Railway Rails Using Shakedown Theory, Finite Element Calculations, and Lab and Field Trials
,”
Int. J. Fatigue
,
27
(
6
), pp.
680
694
. 10.1016/j.ijfatigue.2004.11.002
105.
Clare
,
A. T.
,
Oyelola
,
O.
,
Abioye
,
T. E.
, and
Farayibi
,
P. K.
,
2013
, “
Laser Cladding of Rail Steel With Co-Cr Surface Engineering
,”
Surf. Eng.
,
29
(
10
), pp.
731
736
. 10.1179/1743294412Y.0000000075
106.
Clare
,
A.
,
Oyelola
,
O.
,
Folkes
,
J.
, and
Farayibi
,
P.
,
2012
, “
Laser Cladding for Railway Repair and Preventative Maintenance
,”
J. Laser Appl.
,
24
(
3
), p.
032004
. 10.2351/1.4710578
107.
Lewis
,
S. R.
,
Lewis
,
R.
, and
Fletcher
,
D. I.
,
2015
, “
Assessment of Laser Cladding as an Option for Repairing/Enhancing Rails
,”
Wear
,
330–331
, pp.
581
591
. 10.1016/j.wear.2015.02.027
108.
Lewis
,
S. R.
,
Fretwell-Smith
,
S.
,
Goodwin
,
P. S.
,
Smith
,
L.
,
Lewis
,
R.
,
Aslam
,
M.
,
Fletcher
,
D. I.
,
Murray
,
K.
, and
Lambert
,
R.
,
2016
, “
Improving Rail Wear and RCF Performance Using Laser Cladding
,”
Wear
,
366–367
, pp.
268
278
. 10.1016/j.wear.2016.05.011
109.
Fu
,
Z. K.
,
Ding
,
H. H.
,
Wang
,
W. J.
,
Liu
,
Q. Y.
,
Guo
,
J.
, and
Zhu
,
M. H.
,
2015
, “
Investigation on Microstructure and Wear Characteristic of Laser Cladding Fe-Based Alloy on Wheel/Rail Materials
,”
Wear
,
330–331
, pp.
592
599
. 10.1016/j.wear.2015.02.053
110.
Wang
,
W. J.
,
Hu
,
J.
,
Guo
,
J.
,
Liu
,
Q. Y.
, and
Zhu
,
M. H.
,
2014
, “
Effect of Laser Cladding on Wear and Damage Behaviors of Heavy-Haul Wheel/Rail Materials
,”
Wear
,
311
(
1–2
), pp.
130
136
. 10.1016/j.wear.2014.01.011
111.
Guo
,
H. M.
,
Wang
,
Q.
,
Wang
,
W. J.
,
Guo
,
J.
,
Liu
,
Q. Y.
, and
Zhu
,
M. H.
,
2015
, “
Investigation on Wear and Damage Performance of Laser Cladding Co-Based Alloy on Single Wheel or Rail Material
,”
Wear
,
328–329
, pp.
329
337
. 10.1016/j.wear.2015.03.002
112.
Roy
,
T.
,
Lai
,
Q.
,
Abrahams
,
R.
,
Mutton
,
P.
,
Paradowska
,
A.
,
Soodi
,
M.
, and
Yan
,
W.
,
2018
, “
Effect of Deposition Material and Heat Treatment on Wear and Rolling Contact Fatigue of Laser Cladded Rails
,”
Wear
,
412–413
, pp.
69
81
. 10.1016/j.wear.2018.07.001
113.
Lai
,
Q.
,
Abrahams
,
R.
,
Yan
,
W.
,
Qiu
,
C.
,
Mutton
,
P.
,
Paradowska
,
A.
,
Fang
,
X.
,
Soodi
,
M.
, and
Wu
,
X.
,
2018
, “
Effects of Preheating and Carbon Dilution on Material Characteristics of Laser-Cladded Hypereutectoid Rail Steels
,”
Mater. Sci. Eng. A
,
712
, pp.
548
563
. 10.1016/j.msea.2017.12.003
114.
Lai
,
Q.
,
Abrahams
,
R.
,
Yan
,
W.
,
Qiu
,
C.
,
Mutton
,
P.
,
Paradowska
,
A.
, and
Soodi
,
M.
,
2017
, “
Investigation of a Novel Functionally Graded Material for the Repair of Premium Hypereutectoid Rails Using Laser Cladding Technology
,”
Compos. Part B
,
130
, pp.
174
191
. 10.1016/j.compositesb.2017.07.089
115.
Lai
,
Q.
,
Abrahams
,
R.
,
Yan
,
W.
,
Qiu
,
C.
,
Mutton
,
P.
,
Paradowska
,
A.
,
Soodi
,
M.
, and
Wu
,
X.
,
2019
, “
Influences of Depositing Materials, Processing Parameters and Heating Conditions on Material Characteristics of Laser-Cladded Hypereutectoid Rails
,”
J. Mater. Process. Technol.
,
263
, pp.
1
20
. 10.1016/j.jmatprotec.2018.07.035
116.
Lewis
,
S. R.
,
Lewis
,
R.
,
Goodwin
,
P. S.
,
Fretwell-Smith
,
S.
,
Fletcher
,
D. I.
,
Murray
,
K.
, and
Jaiswal
,
J.
,
2017
, “
Full-Scale Testing of Laser Clad Railway Track; Case Study—Testing for Wear, Bend Fatigue and Insulated Block Joint Lipping Integrity
,”
Wear
,
376–377
, pp.
1930
1937
. 10.1016/j.wear.2017.02.023
117.
Robles Hernández
,
F. C.
,
Okonkwo
,
A. O.
,
Kadekar
,
V.
,
Metz
,
T.
, and
Badi
,
N.
,
2016
, “
Laser Cladding: The Alternative for Field Thermite Welds Life Extension
,”
Mater. Des.
,
111
, pp.
165
173
. 10.1016/j.matdes.2016.08.061
118.
Pun
,
C. L.
,
Kan
,
Q.
,
Mutton
,
P.
,
Kang
,
G.
, and
Yan
,
W.
,
2015
, “
An Efficient Computational Approach to Evaluate the Ratcheting Performance of Rail Steels Under Cyclic Rolling Contact in Service
,”
Int. J. Mech. Sci.
,
101–102
, pp.
213
226
. 10.1016/j.ijmecsci.2015.08.008
119.
Pun
,
C. L.
,
Kan
,
Q.
,
Mutton
,
P.
,
Kang
,
G.
, and
Yan
,
W.
,
2014
, “
Ratcheting Behaviour of High Strength Rail Steels Under Bi-Axial Compression-Torsion Loadings: Experiment and Simulation
,”
Int. J. Fatigue
,
66
, pp.
138
154
. 10.1016/j.ijfatigue.2014.03.021
120.
Zhu
,
Y.
,
Yang
,
Y.
,
Mu
,
X.
,
Wang
,
W.
,
Yao
,
Z.
, and
Yang
,
H.
,
2019
, “
Study on Wear and RCF Performance of Repaired Damage Railway Wheels: Assessing Laser Cladding to Repair Local Defects on Wheels
,”
Wear
,
430–431
, pp.
126
136
. 10.1016/j.wear.2019.04.028
You do not currently have access to this content.