Biotribology and biomechanics are evolving fields that draw from many disciplines. A natural relationship particularly exists between tribology and biology because many biological systems rely on tribophysics for adhesion, lubrication, and locomotion. This leads to many biomimetic inspirations and applications. The current study looks to mimic the function of articular cartilage in purely mechanical systems. To accomplish this goal, a novel coupling of phenomena is utilized. A flexible, porous, viscoelastic material is paired with a hydrodynamic load to assess the feasibility and benefit of a biomimetic thrust bearing. This study presents the dynamic properties of the coupled system, as determined from transient to steady operating states. The results indicate that bio-inspired bearings may have application in certain tribological systems, including biomechanical joint replacements, dampers, flexible rotordynamic bearings, and seals.

References

1.
Smyth
,
P. A.
,
Green
,
I.
,
Jackson
,
R. L.
, and
Hanson
,
R. R.
,
2014
, “
Biomimetic Model of Articular Cartilage Based on In Vivo Experiments
,”
J. Biomimetics, Biomaterials Biomed. Eng.
,
21
, pp.
75
91
.
2.
Smyth
,
P. A.
, and
Green
,
I.
,
2015
, “
Fractional Calculus Model of Articular Cartilage Based on Experimental Stress-Relaxation
,”
Mech. Time-Dependent Mater.
,
19
(
2
), pp.
209
228
.
3.
Mow
,
V.
,
Gu
,
W.
, and
Chen
,
F.
,
2005
, “
Structure and Function of Articular Cartilage and Meniscus
,”
Basic Orthopaedic Biomechanics & Mechano-Biology
, 3rd ed.,
Lippincott Williams & Wilkins
,
Philadelphia, PA
, pp.
181
258
.
4.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.
5.
Mak
,
A. F.
,
1986
, “
The Apparent Viscoelastic Behavior of Articular Cartilage—The Contributions From the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows
,”
ASME J. Biomech. Eng.
,
108
(
2
), pp.
123
130
.
6.
Suh
,
J. K.
, and
DiSilvestro
,
M. R.
,
1999
, “
Biphasic Poroviscoelastic Behavior of Hydrated Biological Soft Tissue
,”
ASME J. Appl. Mech.
,
66
(
2
), pp.
528
535
.
7.
Setton
,
L. A.
,
Zhu
,
W.
, and
Mow
,
V. C.
,
1993
, “
The Biphasic Poroviscoelastic Behavior of Articular Cartilage: Role of the Surface Zone in Governing the Compressive Behavior
,”
J. Biomech.
,
26
(
4–5
), pp.
581
592
.
8.
Ateshian
,
G. A.
,
Wang
,
H.
, and
Lai
,
W. M.
,
1998
, “
The Role of Interstitial Fluid Pressurization and Surface Porosities on the Boundary Friction of Articular Cartilage
,”
ASME J. Tribol.
,
120
(
2
), pp.
241
248
.
9.
Ateshian
,
G. A.
,
2009
, “
The Role of Interstitial Fluid Pressurization in Articular Cartilage Lubrication
,”
J. Biomech.
,
42
(
9
), pp.
1163
1176
.
10.
Wilson
,
W.
,
van Donkelaar
,
C. C.
,
van Rietbergen
,
B.
,
Ito
,
K.
, and
Huiskes
,
R.
,
2004
, “
Stresses in the Local Collagen Network of Articular Cartilage: A Poroviscoelastic Fibril-Reinforced Finite Element Study
,”
J. Biomech.
,
37
(
3
), pp.
357
366
.
11.
Wilson
,
W.
,
van Donkelaar
,
C. C.
,
van Rietbergen
,
B.
, and
Huiskes
,
R.
,
2005
, “
A Fibril-Reinforced Poroviscoelastic Swelling Model for Articular Cartilage
,”
J. Biomech.
,
38
(
6
), pp.
1195
1204
.
12.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
, and
Suh
,
J.-K. F.
,
2001
, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage—II: Effect of Variable Strain Rates
,”
ASME J. Biomech. Eng.
,
123
(
2
), pp.
198
200
.
13.
DiSilvestro
,
M. R.
, and
Suh
,
J.-K. F.
,
2001
, “
A Cross-Validation of the Biphasic Poroviscoelastic Model of Articular Cartilage in Unconfined Compression, Indentation, and Confined Compression
,”
J. Biomech.
,
34
(
4
), pp.
519
525
.
14.
Smyth
,
P. A.
, and
Green
,
I.
,
2017
, “
Analysis of Coupled Poroviscoelasticity and Hydrodynamic Lubrication
,”
Tribol. Lett.
,
65
(
1
), pp.
1
10
.
15.
Miller
,
B.
, and
Green
,
I.
,
1998
, “
Constitutive Equations and the Correspondence Principle for the Dynamics of Gas Lubricated Triboelements
,”
ASME J. Tribol.
,
120
(
2
), pp.
345
352
.
16.
Miller
,
B.
, and
Green
,
I.
,
2001
, “
Numerical Formulation for the Dynamic Analysis of Spiral-Grooved Gas Face Seals
,”
ASME J. Tribol.
,
123
(2), pp.
395
403
.
17.
Gurtin
,
M. E.
, and
Sternberg
,
E.
,
1962
, “
On the Linear Theory of Viscoelasticity
,”
Archive Rational Mech. Anal.
,
11
(
1
), pp.
291
356
.
18.
Koeller
,
R.
,
1984
, “
Applications of Fractional Calculus to the Theory of Viscoelasticity
,”
ASME J. Appl. Mech.
,
51
(2), pp.
299
307
.
19.
Erdélyi
,
A.
,
Magnus
,
W.
,
Oberhettinger
,
F.
, and
Tricomi
,
F. G.
, eds.,
1955
,
Higher Transcendental Functions
, Vol.
III
,
McGraw-Hill
,
New York
.
20.
Smyth
,
P. A.
,
Varney
,
P. A.
, and
Green
,
I.
,
2016
, “
A Fractional Calculus Model of Viscoelastic Stator Supports Coupled With Elastic Rotor–Stator Rub
,”
ASME J. Tribol.
,
138
(
4
), p.
041101
.
21.
Green
,
I.
,
1990
, “
Gyroscopic and Damping Effects on the Stability of a Noncontacting Flexibly-Mounted Rotor Mechanical Face Seal
,”
Dyn. Rotating Mach.
, pp.
153
173
.
22.
Miller
,
B.
, and
Green
,
I.
,
1997
, “
On the Stability of Gas Lubricated Triboelements Using the Step Jump Method
,”
ASME J. Tribol.
,
119
(
1
), pp.
193
199
.
23.
Prakash
,
J.
, and
Vij
,
S.
,
1974
, “
Analysis of Narrow Porous Journal Bearing Using Beavers-Joseph Criterion of Velocity Slip
,”
ASME J. Appl. Mech.
,
41
(
2
), pp.
348
354
.
24.
Etsion
,
I.
, and
Michael
,
O.
,
1994
, “
Enhancing Sealing and Dynamic Performance With Partially Porous Mechanical Face Seals
,”
Tribol. Trans.
,
37
(
4
), pp.
701
710
.
You do not currently have access to this content.