Effect of roughness orientation on lubricant film thickness has been an important issue of surface design, attracting much attention since the 1970 s. A systematical study, however, is still needed for various contact types in an extended range of operating conditions, especially in mixed lubrication cases with film thickness to roughness ratio (λ ratio) smaller than 0.5. The present study employs a deterministic mixed elastohydrodynamic lubrication (EHL) model to investigate the performance of lubricating films in different types of contact geometry, including the line contact, circular contact, and elliptical contacts of various ellipticity ratios. The speed range for analyzed cases covers 11 orders of magnitude so that the entire transition from full-film and mixed EHL down to dry contact (corresponding λ ratio from about 3.5 down to 0.001 or so) is simulated. Three types of machined surfaces are used, representing transverse, longitudinal, and isotropic roughness, respectively. The line contact results are compared with those from the stochastic models by Patir and Cheng (“Effect of Surface Roughness Orientation on the Central Film Thickness in EHD Contacts,” Proc. 5th Leeds-Lyon Symp. on Tribol., 1978, pp. 15–21) and the influence of roughness orientation predicted by the deterministic model is found to be less significant than that by the stochastic models, although the basic trends are about the same when λ > 0.5. The orientation effect for circular or elliptical contact problems appears to be more complicated than that for line contacts due to the existence of significant lateral flows. In circular contacts, or elliptical contacts with the ellipticity ratio smaller than one, the longitudinal roughness may become more favorable than the isotropic and transverse. Overall, the orientation effect is significant in the mixed EHL regime where theλratio is roughly in the range from 0.05 to 1.0. It is relatively insignificant for both the full-film EHL (λ > 1.2 or so) and the boundary lubrication/dry contact (λ < 0.025 ∼ 0.05).

References

1.
Greenwood
,
J. A.
, and
Williamson
,
J. B.
,
1966
,
“Contact of Nominally Flat Surfaces,”
Proc. Roy. Soc.
,
A295
, pp.
300
319
.10.1098/rspa.1966.0242
2.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1970–1971
,
“The Contact of Two Nominally Flat Rough Surfaces,”
Proc. Inst. Mech. Engr.
,
185
, Part I, 48, pp.
625
633
.10.1243/PIME_PROC_1970_185_069_02
3.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
,
“An Average Flow Model for Determining Effects of Three- Dimensional Roughness on Partial Hydrodynamic Lubrication,”
ASME J. Lub. Tech.
,
100
, pp.
12
17
.10.1115/1.3453103
4.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
,
“Effect of Surface Roughness Orientation on the Central Film Thickness in EHD Contacts,”
Proc. 5th Leeds-Lyon Symp. on Tribol., London, pp.
15
21
.
5.
Majumdar
,
B. C.
, and
Hamrock
,
B. J.
,
1982
,
“Effect of Surface Roughness on Elastohydrodynamic Line Contact,”
ASME J. Lub. Tech.
,
104
, pp.
401
409
.10.1115/1.3253232
6.
Prakash
,
J.
, and
Czichos
,
H.
,
1983
,
“Influence of Surface Roughness and Its Orientation on Partial Elastohydrodynamic Lubrication of Rollers,”
ASME J. Lub. Tech.
,
105
, pp.
591
597
.10.1115/1.3254682
7.
Zhu
,
D.
,
Cheng
,
H. S.
, and
Hamrock
,
B. J.
,
1990
,
“Effect of Surface Roughness on Pressure Spike and Film Constriction in Elastohydrodynamically Lubricated Line Contacts,”
Tribol. Trans.
,
33
, pp.
267
273
.10.1080/10402009008981955
8.
Zhu
,
D.,
and
Cheng
,
H. S.
,
1988
,
“Effect of Surface Roughness on the Point Contact EHL,”
ASME J. Tribol.
,
110
, pp.
32
37
.10.1115/1.3261571
9.
Li
,
W.-L
,
Wang
,
C.-I.
, and
Hwang
,
C.-C.
,
1995
,
“Effects of Roughness Orientations on Thin Film Lubrication of a Magnetic Recording System,”
J. Phys. D Appl. Phys.
,
28
, pp.
1011
1012
.10.1088/0022-3727/28/6/001
10.
Li
,
W.-L.
,
Wang
,
C.-I.
, and
Hwang
,
C.-C.
,
1997
,
“An Average Reynolds Equation for Non-Newtonian Fluid with Application to the Lubrication of the Magnetic Head-Disk Interface,”
Tribol. Trans.
,
40
, pp.
111
119
.10.1080/10402009708983636
11.
Letalleur
,
N.
,
Plouraboue
,
F.
, and
Prat
,
M
,
2002
, “
Average Flow Model of Rough Surface Lubrication: Flow Factors for Sinusoidal Surfaces
,”
ASME J. Tribol.
,
124
, pp.
539
546
.10.1115/1.1467084
12.
Sahlin
,
F.
,
2008
, “
Lubrication, Contact Mechanics and Leakage between Rough Surfaces
,” Ph. D. Thesis, Luleå University of Technology, Lulea, Sweden.
13.
Harp
,
S.
, and
Salant
,
R.
,
2001
,
“An Average Flow Model of Rough Surface Lubrication With Inter-Asperity Cavitation,”
ASME J. Tribol.
,
123
, pp.
134
143
.10.1115/1.1332397
14.
Wang
,
Q.
,
Shi
,
F.
, and
Lee
,
S.
,
1997
,
“A Mixed Lubrication Study of Journal Bearing Conformal Contacts,”
ASME J. Tribol.
,
119
, pp.
456
461
.10.1115/1.2833519
15.
Akbarzadeh
,
S.
, and
Khonsari
,
M. M.
,
2010
,
“On the Prediction of Running-in Behavior in Mixed-Lubrication Line Contact,”
ASME J. Tribol.
,
132
, p.
032102
.10.1115/1.4001622
16.
Liu
,
G.
, and
Wang
,
Q.
,
2000
,
“Thermoelastic Asperity Contacts, Frictional Shear, and Parameter Correlation,”
ASME J. Tribol.
,
122
, pp.
300
307
.10.1115/1.555357
17.
Chen
,
W. W.
,
Wang
,
Q.
,
Liu
,
Y.
,
Chen
,
W.
,
Cao
,
J.
,
Xia
,
C.
,
Talwar
,
R.
, and
Lederich
,
R.
,
2007
,
“Analysis and Convenient Formulas for Elasto-Plastic Contacts of Nominally Flat Surfaces: Average Gap, Contact Area Ratio, and Plastically Deformed Volume,”
Tribol. Lett.
,
28
, pp.
27
38
.10.1007/s11249-007-9244-7
18.
Wang
,
Q.
,
Zhu
,
D.
,
Yu
,
T.
,
Cheng
,
H. S.
,
Jiang
,
J.
, and
Liu
,
S.
,
2004
,
“Mixed Lubrication Analyses by a Micro-Macro Approach and a Full-Scale Micro EHL Model,”
ASME J. Tribol.
,
126
, pp.
81
91
.10.1115/1.1631017
19.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elastohydrodynamic Lubrication
,
Pergamon Press
, New York.
20.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1981
,
Ball Bearing Lubrication, the Elastohydrodynamics of Elliptical Contacts
,
John Wiley
,
New York
.
21.
Lubrecht
,
A. A.
,
ten Napel
,
W. E.
, and
Bosma
,
R.
,
1988
,
“The Influence of Longitudinal and Transverse Roughness on the Elastohydrodynamic Lubrication of Circular Contacts,”
ASME J. Tribol.
,
110
, pp.
421
426
.10.1115/1.3261645
22.
Kweh
,
C. C.
,
Evans
,
H. P.
, and
Sindle
,
R. W.
,
1989
,
“Micro-Elastohydrodynamic Lubrication of An Elliptical Contact With Transverse and Three-Dimensional Roughness,”
ASME J. Tribol.
,
111
, pp.
577
584
.10.1115/1.3261980
23.
Chang
,
L.
Cusano
,
C.
, and
Conry
,
T. F.
,
1989
,
“Effects of Lubricant Rheology and Kinematic Conditions on Micro-Elastohydrodynamic Lubrication,”
ASME J. Tribol.
,
111
, pp.
344
351
.10.1115/1.3261920
24.
Chang
,
L.
,
Webster
,
M. N.
, and
Jackson
,
A.
,
1994
,
“A Line Contact Micro-EHL Model With Three-Dimensional Surface Topography,”
ASME J. Tribol.
,
116
, pp.
21
28
.10.1115/1.2927040
25.
Ai
,
X.
,
Cheng
,
H. S.
, and
Zheng
,
L.
,
1993
,
“A Transient Model for Micro-Elastohydrodynamic Lubrication With Three Dimensional Irregularities,”
ASME J. Tribol.
,
115
, pp.
102
110
.10.1115/1.2920961
26.
Kweh
,
C. C.
,
Patchong
,
M. J.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
,
1992
,
“Simulation of Elastohydrodynamic Contacts Between Rough Surfaces,”
ASME J. Tribol.
,
114
, pp.
412
419
.10.1115/1.2920900
27.
Venner
,
C. H.
, and
ten Napel
,
W. E.
,
1992
,
“Surface Roughness Effects in an EHL Line Contact,”
ASME J. Tribol.
,
114
, pp.
616
622
.10.1115/1.2920926
28.
Xu
,
G.
, and
Sadeghi
,
F.
,
1996
,
“Thermal EHL Analysis of Circular Contacts With Measured Surface Roughness,”
ASME J. Tribol.
,
118
, pp.
473
483
.10.1115/1.2831560
29.
Zhu
,
D.
, and
Ai
,
X.
,
1997
,
“Point Contact EHL Based on Optically Measured Three-Dimensional Rough Surfaces,”
ASME J. Tribol.
,
119
, pp.
375
384
.10.1115/1.2833498
30.
Ai
,
X.
,
1993
,
“Numerical Analyses of Elastohydrodynamically Lubricated Line and Point Contacts With Rough Surfaces By Using Semi-system and Multigrid Methods,”
Ph.D. thesis, Northwestern University, Evanston, IL.
31.
Zhu
,
D.
, and
Hu
,
Y. Z.
,
1999
, “
The Study of Transition From Full Film Elastohydrodynamic to Mixed and Boundary Lubrication
,” The Advancing Frontier of Engineering Tribology, Proc. of the 1999 STLE/ASME H.S. Cheng Tribology Surveillance, STLE, Park Ridge, Illinois, pp.
150
156
.
32.
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2000
,
“A Full Numerical Solution to the Mixed Lubrication in Point Contacts,”
ASME J. Tribol.
,
122
, pp.
1
9
.10.1115/1.555322
33.
Zhu
,
D.
, and
Wang
,
Q.
,
2011
,
“Elastohydrodynamic Lubrication (EHL): A Gateway to Interfacial Mechanics — Review and Prospect,”
ASME J. Tribol.
,
133
, p.
041001
.10.1115/1.4004457
34.
Zhu
,
D.
,
Wang
,
J.
,
Ren
,
N.
, and
Wang
,
Q.
,
2012
,
“Mixed Elastohydrodynamic Lubrication in Finite Roller Contacts Involving Realistic Geometry and Surface Roughness,”
ASME J. Tribol.
,
134
, p.
011504
.10.1115/1.4005952
35.
Liu
,
Y. C.
,
Wang
,
Q.
,
Wang
,
W. Z.
,
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2006
,
“Effects of Differential Scheme and Mesh Density on EHL Film Thickness in Point Contacts,”
ASME J. Tribol.
,
128
, pp.
641
653
.10.1115/1.2194916
36.
Zhu
,
D.
,
2007
,
“On Some Aspects in Numerical Solution of Thin-Film and Mixed EHL,”
Proc. IMechE, J-J. Eng. Tribol.
,
221
, pp.
561
579
.10.1243/13506501JET259
37.
Liu
,
Y. C.
,
Wang
,
Q.
,
Zhu
,
D.
,
Wang
,
W. Z.
, and
Hu
,
Y.Z.
,
2009
,
“Effect of Differential Scheme and Viscosity Model on Rough Surface Point Contact Isothermal EHL,”
ASME J. Tribol.
,
131
, p.
044501
.10.1115/1.2842245
38.
Wang
,
W. Z.
,
Hu
,
Y. Z.
,
Liu
,
Y. C.
, and
Zhu
,
D.
,
2010
,
“Solution Agreement Between Dry Contacts and Lubrication System at Ultra-Low Speed,”
Proc. IMechE J-J. Eng. Tribol.
,
224
, pp.
1049
1060
.10.1243/13506501JET774
39.
Ren
,
N.
,
Zhu
,
D.
,
Chen
,
W. W.
,
Liu
,
Y.
, and
Wang
,
Q.J.
,
2009
,
“A Three-Dimensional Deterministic Model for Rough Surface Line Contact EHL Problems,”
ASME J. Tribol.
,
131
, p.
011501
.10.1115/1.2991291
40.
Chen
,
W. W.
,
Liu
,
S. B.
, and
Wang
,
Q.
,
2008
,
“Fast Fourier Transform Based Numerical Methods for Elasto-Plastic Contacts With Nominally Flat Surface,”
ASME J. Appl. Mech.
,
75
, p.
011022
.10.1115/1.2755158
41.
Zhu
,
D.
, and
Hu
,
Y.Z.
,
2001
, “
A Computer Program Package for the Prediction of EHL and Mixed Lubrication Characteristics, Friction, Subsurface Stresses and Flash Temperatures Based on Measured 3-D Surface Roughness
,”
Tribol. Trans.
,
44
, pp.
383
390
.10.1080/10402000108982471
42.
Liu
,
S. B.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
,
“A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses,”
Wear
,
243
, pp.
101
111
.10.1016/S0043-1648(00)00427-0
43.
Wang
,
W. Z.
,
Wang
,
H.
,
Liu
,
Y. C.
,
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2003
,
“A Comparative Study of the Methods for Calculation of Surface Elastic Deformation,”
Proc. IMechE J-J. Eng. Tribol.
,
217
, pp.
145
153
.10.1243/13506500360603570
44.
Zhu
,
D.
, and
Wang
,
Q.
,
2012
,
“On the λ Ratio Range of Mixed Lubrication,”
Proc. IMechE J-J. Eng. Tribol.
,
226
, pp.
1010
1022
.10.1177/1350650112461867
You do not currently have access to this content.