A contact model using semi-analytical methods, relying on elementary analytical solutions, has been developed. It is based on numerical techniques adapted to contact mechanics, with strong potential for inelastic, inhomogeneous or anisotropic materials. Recent developments aim to quantify displacements and stresses of an anisotropic material contacting both an isotropic or anisotropic material. The influence of symmetry axes on the contact solution will be more specifically analyzed.
Issue Section:
Contact Mechanics
References
1.
Kelvin
, L.
, 1848, “Note on the Integration of the Equations of Equilibrium of an Elastic Solid
,” Cambridge and Dublin Math. J.
, 3
, pp. 87
–89
.2.
Boussinesq
, J.
, 1885, Application des Potentiels a l’étude de l’équilibre et du Mouvement des Solides Élastiques
, Gauthier-Villars
.3.
Mindlin
, R.
, 1936, “Force at a Point in the Interior of a Semi-Infinite Solid
,” Physics (N.Y.)
, 7
(5
), pp. 195
–202
.4.
Ting
, T.
, and Lee
, V.
, 1997, “The Three-Dimensional Elastostatic Green’s Function for General Anisotropic Linear Elastic Solids
,” Q. J. Mech. Appl. Math.
, 50
(3
), pp. 407
–426
.5.
Stroh
, A.
, 1958, “Dislocations and Cracks in Anisotropic Elasticity
,” Philos. Mag.
, 3
(30
), pp. 625
–646
.6.
Stroh
, A.
, 1962, “Steady State Problems in Anisotropic Elasticity
,” J. Math. Phys.
, 41
(2
), pp. 77
–103
.7.
Ting
, T.
, 1996, Anisotropic Elasticity: Theory and Applications
, Oxford University Press, NY
.8.
Pan
, E.
, and Yuan
, F.
, 2000, “Three-Dimensional Green’s Functions in Anisotropic Bimaterials
,” Int. J. Solids Struct.
, 37
(38
), pp. 5329
–5351
.9.
Yang
, B.
, and Pan
, E.
, 2002, “Three-Dimensional Green’s Functions in Anisotropic Trimaterials
,” Int. J. Solids Struct.
, 39
(8
), pp. 2235
–2255
.10.
Pan
, E.
, and Yang
, B.
, 2003, “Three-Dimensional Interfacial Green’s Functions in Anisotropic Bimaterials
,” Appl. Math. Model.
, 27
(4
), pp. 307
–326
.11.
Ciavarella
, M.
, Demelio
, G.
, Schino
, M.
, and Vlassak
, J.
, 2001, “The General 3D Hertzian Contact Problem for Anisotropic Materials
,” Key Eng. Mater.
, 221
, pp. 281
–292
.12.
Li
, X.
, and Wang
, M.
, 2006, “Hertzian Contact Of Anisotropic Piezoelectric Bodies
,” J. Elast.
, 84
(2
), pp. 153
–166
.13.
Borodich
, F.
, 2000, “Some Contact Problems of Anisotropic Elastodynamics: Integral Characteristics and Exact Solutions
,” Int. J. Solids Struct.
, 37
(24
), pp. 3345
–3373
.14.
Swanson
, S.
, 2004, “Hertzian Contact of Orthotropic Materials
,” Int. J. Solids Struct.
, 41
, pp. 1945
–1959
.15.
Willis
, J.
, 1966, “Hertzian Contact of Anisotropic Bodies
,” J. Mech. Phys. Solids
, 14
(3
), pp. 163
–176
.16.
Pagano
, N.
, 1970, “Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates
,” J. Compos. Mater.
, 4
(1
), pp. 20
–34
.17.
Aizikovich
, S.
, Alexandrov
, V.
, Kalker
, J.
, Krenev
, L.
, and Trubchik
, I.
, 2002, “Analytical Solution of the Spherical Indentation Problem for a Half-Space With Gradients With the Depth Elastic Properties
,” Int. J. Solids Struct.
, 39
(10
), pp. 2745
–2772
.18.
Gao
, Y.
, and Pharr
, G.
, 2007, “Multidimensional Contact Moduli of Elastically Anisotropic Solids
,” Scr. Mater.
, 57
(1
), pp. 13
–16
.19.
Rand
, O.
, and Rovenskii
, V.
, 2005, Analytical Methods in Anisotropic Elasticity: With Symbolic Computational Tools
, Birkhauser
.20.
Galin
, L.
, 2008, Contact Problems: The Legacy of LA Galin
, Springer Verlag
.21.
Lin
, Y.
, and Ovaert
, T.
, 2004, “A Rough Surface Contact Model For General Anisotropic Materials
,” J. Tribol.
, 126
(1
), pp. 41
–49
.22.
He
, L.
, and Ovaert
, T.
, 2008, “Three-Dimensional Rough Surface Contact Model for Anisotropic Materials
,” J. Tribol.
, 130
(2
), pp. 021402
.23.
Barnett
, D.
, and Lothe
, J.
, 1975, “Line Force Loadings on Anisotropic Half-Spaces and Wedges
,” Phys. Norv.
, 8
(1
), pp. 13
–22
.24.
Kahya
, V.
, Ozsahin
, T.
, Birinci
, A.
, and Erdol
, R.
, 2007, “A Receding Contact Problem for an Anisotropic Elastic Medium Consisting of a Layer and a Half Plane
,” Int. J. Solids Struct.
, 44
(17
), pp. 5695
–5710
.25.
Batra
, R.
, and Jiang
, W.
, 2008, “Analytical Solution of the Contact Problem of a Rigid Indenter and an Anisotropic Linear Elastic Layer
,” Int. J. Solids Struct.
, 45
(22
), pp. 5814
–5830
.26.
Argatov
, I.
, 2011, “Depth-Sensing Indentation of a Transversely Isotropic Elastic Layer: Second-Order Asymptotic Models for Canonical Indenters
,” Int. J. Solids Struct.
, 48
(25-26
), pp. 3444
–3452
.27.
Brock
, L.
, and Georgiadis
, H.
, 2007, “Multiple-Zone Sliding Contact With Friction on an Anisotropic Thermoelastic Half-Space
,” Int. J. Solids Struct.
, 44
(9
), pp. 2820
–2836
.28.
Clements
, D.
, and Ang
, W.
, 2009, “On Some Contact Problems For Inhomogeneous Anisotropic Elastic Materials
,” Int. J. Eng. Sci.
, 47
(11-12
), pp. 1149
–1162
.29.
Blázquez
, A.
, Mantič
, V.
, and Pars
, F.
, 2006, “Application of BEM to Generalized Plane Problems for Anisotropic Elastic Materials in Presence of Contact
,” Eng. Anal. Boundary Elem.
, 30
(6
), pp. 489
–502
.30.
Rodriguez-Tembleque
, L.
, Buroni
, F.
, Abascal
, R.
, and Sáez
, A.
, 2011, “3D Frictional Contact of Anisotropic Solids Using BEM
,” Eur. J. Mech. A/Solids
, 30
(2
), pp. 95
–104
.31.
Jacq
, C.
, Nélias
, D.
, Lormand
, G.
, and Girodin
, D.
, 2002, “Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code
,” J. Tribol.
, 124
(4
), pp. 653
–667
.32.
Boucly
, V.
, Nelias
, D.
, Liu
, S.
, Wang
, Q.
, and Keer
, L.
, 2005, “Contact Analyses for Bodies with Frictional Heating and Plastic Behavior
,” J. Tribol.
, 127
(2
), pp. 355
–364
.33.
Chen
, W.
, and Wang
, Q.
, 2008, “Thermomechanical Analysis of Elastoplastic Bodies in a Sliding Spherical Contact and the Effects of Sliding Speed, Heat Partition, and Thermal Softening
,” J. Tribol.
, 130
(4
), pp. 041402
.34.
Fulleringer
, B.
, and Nélias
, D.
, 2010, “On the Tangential Displacement of a Surface Point Due to a Cuboid of Uniform Plastic Strain in a Half-Space
,” J. Appl. Mech.
, 77
(2
), pp. 021014
.35.
Leroux
, J.
, Fulleringer
, B.
, and Nelias
, D.
, 2010, “Contact Analysis in Presence of Spherical Inhomogeneities Within a Half-Space
,” Int. J. Solids Struct.
, 47
(22-23
), pp. 3034
–3049
.36.
Zhou
, K.
, Keer
, L.
, and Wang
, Q.
, 2011, “Semi-Analytic Solution for Multiple Interacting Three-Dimensional Inhomogeneous Inclusions of Arbitrary Shape in an Infinite Space
,” Int. J. Numer. Methods Eng.
, 87
(7
), pp. 617
–638
.37.
Leroux
, J.
, and Nélias
, D.
, 2011, “Stick-Slip Analysis of a Circular Point Contact Between a Rigid Sphere and a Flat Unidirectional Composite With Cylindrical Fibers
,”Int. J. Solids Struct.
, 48
, pp. 3510
–3520
.38.
Gallego
, L.
, Nelias
, D.
, and Deyber
, S.
, 2010, “A Fast and Efficient Contact Algorithm for Fretting Problems Applied to Fretting Modes i, ii, and iii
,” Wear
, 268
(1-2
), pp. 208
–222
.39.
Nélias
, D.
, Boucly
, V.
, and Brunet
, M.
, 2006, “Elastic-Plastic Contact Between Rough Surfaces: Proposal for a Wear or Running-in Model
,” J. Tribol.
, 128
(2
), pp. 236
–244
.40.
Gallego
, L.
, Nélias
, D.
, and Jacq
, C.
, 2006, “A Comprehensive Method to Predict Wear and to Define the Optimum Geometry of Fretting Surfaces
,” J. Tribol.
, 128
(3
), pp. 476
–485
.41.
Gallego
, L.
, and Nélias
, D.
, 2007, “Modeling of Fretting Wear Under Gross Slip and Partial Slip Conditions
,” J. Tribol.
, 129
(3
), pp. 528
–535
.42.
Gallego
, L.
, Fulleringer
, B.
, Deyber
, S.
, and Nelias
, D.
, 2010, “Multiscale Computation of Fretting Wear at the Blade/Disk Interface
,” Tribol. Int.
, 43
(4
), pp. 708
–718
.43.
Chaise
, T.
, and Nélias
, D.
, 2011, “Contact Pressure and Residual Strain in 3D Elasto-Plastic Rolling Contact for a Circular or Elliptical Point Contact
,” J. Tribol.
, 133
(4
), pp. 041402
.44.
Chaise
, T.
, Nélias
, D.
, and Sadeghi
, F.
, 2011, “On the Effect of Isotropic Hardening on the Coefficient of Restitution for Single or Repeated Impacts Using a Semi-Analytical Method
,” Tribol. Trans.
, 54
(5
), pp. 714
–722
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.