A contact model using semi-analytical methods, relying on elementary analytical solutions, has been developed. It is based on numerical techniques adapted to contact mechanics, with strong potential for inelastic, inhomogeneous or anisotropic materials. Recent developments aim to quantify displacements and stresses of an anisotropic material contacting both an isotropic or anisotropic material. The influence of symmetry axes on the contact solution will be more specifically analyzed.

References

1.
Kelvin
,
L.
, 1848, “
Note on the Integration of the Equations of Equilibrium of an Elastic Solid
,”
Cambridge and Dublin Math. J.
,
3
, pp.
87
89
.
2.
Boussinesq
,
J.
, 1885,
Application des Potentiels a l’étude de l’équilibre et du Mouvement des Solides Élastiques
,
Gauthier-Villars
.
3.
Mindlin
,
R.
, 1936, “
Force at a Point in the Interior of a Semi-Infinite Solid
,”
Physics (N.Y.)
,
7
(
5
), pp.
195
202
.
4.
Ting
,
T.
, and
Lee
,
V.
, 1997, “
The Three-Dimensional Elastostatic Green’s Function for General Anisotropic Linear Elastic Solids
,”
Q. J. Mech. Appl. Math.
,
50
(
3
), pp.
407
426
.
5.
Stroh
,
A.
, 1958, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philos. Mag.
,
3
(
30
), pp.
625
646
.
6.
Stroh
,
A.
, 1962, “
Steady State Problems in Anisotropic Elasticity
,”
J. Math. Phys.
,
41
(
2
), pp.
77
103
.
7.
Ting
,
T.
, 1996,
Anisotropic Elasticity: Theory and Applications
,
Oxford University Press, NY
.
8.
Pan
,
E.
, and
Yuan
,
F.
, 2000, “
Three-Dimensional Green’s Functions in Anisotropic Bimaterials
,”
Int. J. Solids Struct.
,
37
(
38
), pp.
5329
5351
.
9.
Yang
,
B.
, and
Pan
,
E.
, 2002, “
Three-Dimensional Green’s Functions in Anisotropic Trimaterials
,”
Int. J. Solids Struct.
,
39
(
8
), pp.
2235
2255
.
10.
Pan
,
E.
, and
Yang
,
B.
, 2003, “
Three-Dimensional Interfacial Green’s Functions in Anisotropic Bimaterials
,”
Appl. Math. Model.
,
27
(
4
), pp.
307
326
.
11.
Ciavarella
,
M.
,
Demelio
,
G.
,
Schino
,
M.
, and
Vlassak
,
J.
, 2001, “
The General 3D Hertzian Contact Problem for Anisotropic Materials
,”
Key Eng. Mater.
,
221
, pp.
281
292
.
12.
Li
,
X.
, and
Wang
,
M.
, 2006, “
Hertzian Contact Of Anisotropic Piezoelectric Bodies
,”
J. Elast.
,
84
(
2
), pp.
153
166
.
13.
Borodich
,
F.
, 2000, “
Some Contact Problems of Anisotropic Elastodynamics: Integral Characteristics and Exact Solutions
,”
Int. J. Solids Struct.
,
37
(
24
), pp.
3345
3373
.
14.
Swanson
,
S.
, 2004, “
Hertzian Contact of Orthotropic Materials
,”
Int. J. Solids Struct.
,
41
, pp.
1945
1959
.
15.
Willis
,
J.
, 1966,
“Hertzian Contact of Anisotropic Bodies
,”
J. Mech. Phys. Solids
,
14
(
3
), pp.
163
176
.
16.
Pagano
,
N.
, 1970, “
Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates
,”
J. Compos. Mater.
,
4
(
1
), pp.
20
34
.
17.
Aizikovich
,
S.
,
Alexandrov
,
V.
,
Kalker
,
J.
,
Krenev
,
L.
, and
Trubchik
,
I.
, 2002, “
Analytical Solution of the Spherical Indentation Problem for a Half-Space With Gradients With the Depth Elastic Properties
,”
Int. J. Solids Struct.
,
39
(
10
), pp.
2745
2772
.
18.
Gao
,
Y.
, and
Pharr
,
G.
, 2007, “
Multidimensional Contact Moduli of Elastically Anisotropic Solids
,”
Scr. Mater.
,
57
(
1
), pp.
13
16
.
19.
Rand
,
O.
, and
Rovenskii
,
V.
, 2005,
Analytical Methods in Anisotropic Elasticity: With Symbolic Computational Tools
,
Birkhauser
.
20.
Galin
,
L.
, 2008,
Contact Problems: The Legacy of LA Galin
,
Springer Verlag
.
21.
Lin
,
Y.
, and
Ovaert
,
T.
, 2004, “
A Rough Surface Contact Model For General Anisotropic Materials
,”
J. Tribol.
,
126
(
1
), pp.
41
49
.
22.
He
,
L.
, and
Ovaert
,
T.
, 2008, “
Three-Dimensional Rough Surface Contact Model for Anisotropic Materials
,”
J. Tribol.
,
130
(
2
), pp.
021402
.
23.
Barnett
,
D.
, and
Lothe
,
J.
, 1975, “
Line Force Loadings on Anisotropic Half-Spaces and Wedges
,”
Phys. Norv.
,
8
(
1
), pp.
13
22
.
24.
Kahya
,
V.
,
Ozsahin
,
T.
,
Birinci
,
A.
, and
Erdol
,
R.
, 2007,
“A Receding Contact Problem for an Anisotropic Elastic Medium Consisting of a Layer and a Half Plane
,”
Int. J. Solids Struct.
,
44
(
17
), pp.
5695
5710
.
25.
Batra
,
R.
, and
Jiang
,
W.
, 2008, “
Analytical Solution of the Contact Problem of a Rigid Indenter and an Anisotropic Linear Elastic Layer
,”
Int. J. Solids Struct.
,
45
(
22
), pp.
5814
5830
.
26.
Argatov
,
I.
, 2011,
“Depth-Sensing Indentation of a Transversely Isotropic Elastic Layer: Second-Order Asymptotic Models for Canonical Indenters
,”
Int. J. Solids Struct.
,
48
(
25-26
), pp.
3444
3452
.
27.
Brock
,
L.
, and
Georgiadis
,
H.
, 2007,
“Multiple-Zone Sliding Contact With Friction on an Anisotropic Thermoelastic Half-Space
,”
Int. J. Solids Struct.
,
44
(
9
), pp.
2820
2836
.
28.
Clements
,
D.
, and
Ang
,
W.
, 2009, “
On Some Contact Problems For Inhomogeneous Anisotropic Elastic Materials
,”
Int. J. Eng. Sci.
,
47
(
11-12
), pp.
1149
1162
.
29.
Blázquez
,
A.
,
Mantič
,
V.
, and
Pars
,
F.
, 2006,
“Application of BEM to Generalized Plane Problems for Anisotropic Elastic Materials in Presence of Contact
,”
Eng. Anal. Boundary Elem.
,
30
(
6
), pp.
489
502
.
30.
Rodriguez-Tembleque
,
L.
,
Buroni
,
F.
,
Abascal
,
R.
, and
Sáez
,
A.
, 2011, “
3D Frictional Contact of Anisotropic Solids Using BEM
,”
Eur. J. Mech. A/Solids
,
30
(
2
), pp.
95
104
.
31.
Jacq
,
C.
,
Nélias
,
D.
,
Lormand
,
G.
, and
Girodin
,
D.
, 2002,
“Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code
,”
J. Tribol.
,
124
(
4
), pp.
653
667
.
32.
Boucly
,
V.
,
Nelias
,
D.
,
Liu
,
S.
,
Wang
,
Q.
, and
Keer
,
L.
, 2005, “
Contact Analyses for Bodies with Frictional Heating and Plastic Behavior
,”
J. Tribol.
,
127
(
2
), pp.
355
364
.
33.
Chen
,
W.
, and
Wang
,
Q.
, 2008, “
Thermomechanical Analysis of Elastoplastic Bodies in a Sliding Spherical Contact and the Effects of Sliding Speed, Heat Partition, and Thermal Softening
,”
J. Tribol.
,
130
(
4
), pp.
041402
.
34.
Fulleringer
,
B.
, and
Nélias
,
D.
, 2010, “
On the Tangential Displacement of a Surface Point Due to a Cuboid of Uniform Plastic Strain in a Half-Space
,”
J. Appl. Mech.
,
77
(
2
), pp.
021014
.
35.
Leroux
,
J.
,
Fulleringer
,
B.
, and
Nelias
,
D.
, 2010, “
Contact Analysis in Presence of Spherical Inhomogeneities Within a Half-Space
,”
Int. J. Solids Struct.
,
47
(
22-23
), pp.
3034
3049
.
36.
Zhou
,
K.
,
Keer
,
L.
, and
Wang
,
Q.
, 2011, “
Semi-Analytic Solution for Multiple Interacting Three-Dimensional Inhomogeneous Inclusions of Arbitrary Shape in an Infinite Space
,”
Int. J. Numer. Methods Eng.
,
87
(
7
), pp.
617
638
.
37.
Leroux
,
J.
, and
Nélias
,
D.
, 2011, “
Stick-Slip Analysis of a Circular Point Contact Between a Rigid Sphere and a Flat Unidirectional Composite With Cylindrical Fibers
,”
Int. J. Solids Struct.
,
48
, pp.
3510
3520
.
38.
Gallego
,
L.
,
Nelias
,
D.
, and
Deyber
,
S.
, 2010, “
A Fast and Efficient Contact Algorithm for Fretting Problems Applied to Fretting Modes i, ii, and iii
,”
Wear
,
268
(
1-2
), pp.
208
222
.
39.
Nélias
,
D.
,
Boucly
,
V.
, and
Brunet
,
M.
, 2006,
“Elastic-Plastic Contact Between Rough Surfaces: Proposal for a Wear or Running-in Model
,”
J. Tribol.
,
128
(
2
), pp.
236
244
.
40.
Gallego
,
L.
,
Nélias
,
D.
, and
Jacq
,
C.
, 2006,
“A Comprehensive Method to Predict Wear and to Define the Optimum Geometry of Fretting Surfaces
,”
J. Tribol.
,
128
(
3
), pp.
476
485
.
41.
Gallego
,
L.
, and
Nélias
,
D.
, 2007, “
Modeling of Fretting Wear Under Gross Slip and Partial Slip Conditions
,”
J. Tribol.
,
129
(
3
), pp.
528
535
.
42.
Gallego
,
L.
,
Fulleringer
,
B.
,
Deyber
,
S.
, and
Nelias
,
D.
, 2010, “
Multiscale Computation of Fretting Wear at the Blade/Disk Interface
,”
Tribol. Int.
,
43
(
4
), pp.
708
718
.
43.
Chaise
,
T.
, and
Nélias
,
D.
, 2011, “
Contact Pressure and Residual Strain in 3D Elasto-Plastic Rolling Contact for a Circular or Elliptical Point Contact
,”
J. Tribol.
,
133
(
4
), pp.
041402
.
44.
Chaise
,
T.
,
Nélias
,
D.
, and
Sadeghi
,
F.
, 2011, “
On the Effect of Isotropic Hardening on the Coefficient of Restitution for Single or Repeated Impacts Using a Semi-Analytical Method
,”
Tribol. Trans.
,
54
(
5
), pp.
714
722
.
You do not currently have access to this content.