When a drop of coffee dries on the counter-top, it leaves a dense, ringlike stain along its perimeter. Solids immersed in a drying drop will migrate toward the edge of the drop and form a solid ring. Such phenomena create ringlike stains and happen for a wide variety of surfaces, solvents, and solutes. It is referred to as the coffee stain ring effect. The phenomenon is caused by the outward microfluidic flow of the solute within the drop, which is driven by the evaporation of solvent. We show that the mechanism for the ring effect contributes to the nonuniform material removal in chemical mechanical polishing (CMP), specifically, at edges of blanket wafers causing the edge effect or at edges and corners of protrusive features on patterned wafers inducing the doming effect; metal dishing and dielectric erosion. By controlling the evaporation profile of the solvent in the slurry layer between the wafer surface and the polishing pad, such as making grooves or embedding the abrasive particles on the pad, or delivering the slurry from the bottom of the pad, one can improve the uniformity of material removal during the CMP process.

1.
Steigerwald
,
J. M.
,
Murarka
,
S. P.
, and
Gutmann
,
R. J.
, 1997,
Chemical Mechanical Planarization of Microelectronic Materials
,
Wiley
,
New York
, Chap. 1.
2.
Patrick
,
W. J.
,
Guthrie
,
W. L.
,
Standley
,
C. L.
, and
Schiable
,
P. M.
, 1991, “
Application of Chemical Mechanical Polishing to the Fabrication of VLSI Circuit Interconnections
,”
J. Electrochem. Soc.
0013-4651,
138
(
6
), pp.
1778
1784
.
3.
Sivaram
,
S.
,
Bath
,
H.
,
Leggett
,
R.
,
Maury
,
A.
,
Monnig
,
K.
, and
Tolles
,
R.
, 1992, “
Planarizing Interlevel Dielectrics by Chemical-Mechanical Polishing
,”
Solid State Technol.
0038-111X,
35
(
5
), pp.
87
91
.
4.
Ali
,
I.
,
Rodder
,
M.
,
Roy
,
S. R.
,
Shinn
,
G.
, and
Raja
,
M. I.
, 1995, “
Physical Characterization of Chemical Mechanical Planarized Surface for Trench Isolation
,”
J. Electrochem. Soc.
0013-4651,
142
(
9
), pp.
3088
3092
.
5.
Steigerwald
,
J. M.
,
Zirpoli
,
R.
,
Murarka
,
S. P.
,
Price
,
D.
, and
Gutmann
,
R. J.
, 1994, “
Pattern Geometry Effects in the Chemical-Mechanical Polishing of Inlaid Copper Structures
,”
J. Electrochem. Soc.
0013-4651,
141
(
10
), pp.
2842
2848
.
6.
Nanz
,
G.
, and
Camilletti
,
L. E.
, 1995, “
Modeling of Chemical-Mechanical Polishing: A Review
,”
IEEE Trans. Semicond. Manuf.
0894-6507,
8
(
4
), pp.
382
389
.
7.
Terrell
,
E. J.
, and
Higgs
,
C. F.
, III
, 2006, “
Hydrodynamics of Slurry Flow in Chemical Mechanical Polishing
,”
J. Electrochem. Soc.
0013-4651,
153
(
6
), pp.
K15
K22
.
8.
Kasai
,
T.
, and
Bhushan
,
B.
, 2008, “
Physics and Tribology of Chemical Mechanical Planarization
,”
J. Phys. Condens. Matter
0953-8984,
20
, p.
225011
.
9.
Preston
,
F. W.
, 1927, “
The Theory and Design of Plate Glass Polishing Machines
,”
J. Soc. Glass Technol.
0368-4105,
11
, pp.
214
256
.
10.
Baker
,
A. R.
, 1996, “
The Origin of Edge Effect in Chemical Mechanical Planarization
,”
Proc. Electrochem. Soc. Meeting
,
96
, pp.
228
238
.
11.
Wang
,
D.
,
Lee
,
J.
,
Holland
,
K.
,
Bibby
,
T.
,
Beaudoin
,
S.
, and
Cale
,
T.
, 1997, “
Von Mises Stress in Chemical-Mechanical Polishing Processes
,”
J. Electrochem. Soc.
0013-4651,
144
(
3
), pp.
1121
1127
.
12.
Warnock
,
J.
, 1991, “
A Two-Dimensional Process Model for Chemimechanical Polish Planarization
,”
J. Electrochem. Soc.
0013-4651,
138
(
8
), pp.
2398
2402
.
13.
Chekina
,
O. G.
,
Keer
,
L. M.
, and
Liang
,
H.
, 1998, “
Wear-Contact Problems and Modeling of Chemical Mechanical Polishing
,”
J. Electrochem. Soc.
0013-4651,
145
(
6
), pp.
2100
2106
.
14.
Gotkis
,
Y.
,
Schey
,
D.
,
Alamgir
,
S.
,
Yang
,
J.
, and
Holland
,
K.
, 1998, “
Cu CMP With Orbital Technology, Summary of the Experience
,”
Proceedings of the IEEE/SEMI Advanced Semiconductor Manufacturing Conference
, pp.
364
371
.
15.
Yao
,
C. -H.
,
Feke
,
D. L.
,
Robinson
,
K. M.
, and
Meikle
,
S.
, 2000, “
The Influence of Feature-Scale Surface Geometry on CMP Processes
,”
J. Electrochem. Soc.
0013-4651,
147
(
8
), pp.
3094
3099
.
16.
Vlassak
,
J. J.
, 2004, “
A Model for Chemical-Mechanical Polishing of a Material Surface Based on Contact Mechanics
,”
J. Mech. Phys. Solids
0022-5096,
52
(
4
), pp.
847
873
.
17.
Guo
,
Y.
,
Chandra
,
A.
, and
Bastawros
,
A.
, 2004, “
Analytical Dishing and Step Height Reduction Model for CMP With a Viscoelastic Pad
,”
J. Electrochem. Soc.
0013-4651,
151
(
9
), pp.
G583
G589
.
18.
Thakurta
,
D. G.
,
Schwendeman
,
D. W.
,
Gutmann
,
R. J.
,
Shankar
,
S.
,
Jiang
,
L.
, and
Gill
,
W. N.
, 2002, “
Three-Dimensional Wafer-Scale Copper Chemical-Mechanical Planarization Model
,”
Thin Solid Films
0040-6090,
414
(
1
), pp.
78
90
.
19.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
, 1967, “
The Elastic Contact of Rough Spheres
,”
ASME J. Appl. Mech.
0021-8936,
34
(
1
), pp.
153
159
.
20.
Greenwood
,
J. A.
, and
Williamson
,
J. B.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
0950-1207,
295
(
1442
), pp.
300
319
.
21.
Yao
,
C. -H.
,
Feke
,
D. L.
,
Robinson
,
K. M.
, and
Meikle
,
S.
, 2000, “
Modeling of Chemical Mechanical Polishing Processes Using a Discretized Geometry Approach
,”
J. Electrochem. Soc.
0013-4651,
147
(
4
), pp.
1502
1512
.
22.
Runnels
,
S. R.
, 1994, “
Feature-Scale Fluid-Based Erosion Modeling for Chemical-Mechanical Polishing
,”
J. Electrochem. Soc.
0013-4651,
141
(
7
), pp.
1900
1904
.
23.
Yu
,
T. -K.
,
Yu
,
C. -C.
, and
Orlowski
,
M.
, 1993, “
A Statistical Polishing Pad Model for Chemical-Mechanical Polishing
,”
Proc. Tech. Dig. Int. Electron Devices Meet
, pp.
865
868
.
24.
Lai
,
J. -Y.
,
Saka
,
N.
, and
Chun
,
J. -H.
, 2002, “
Evolution of Copper-Oxide Damascene Structures in Chemical Mechanical Polishing
,”
J. Electrochem. Soc.
0013-4651,
149
(
1
), pp.
G31
G40
.
25.
Chen
,
D. -Z.
, and
Lee
,
B. -S.
, 1999, “
Pattern Planarization Model of Chemical Mechanical Polishing
,”
J. Electrochem. Soc.
0013-4651,
146
(
2
), pp.
744
748
.
26.
Tseng
,
W. -T.
,
Chin
,
J. -H.
, and
Kang
,
L. -C.
, 1999, “
A Comparative Study on the Roles of Velocity in the Material Removal Rate During Chemical Mechanical Polishing
,”
J. Electrochem. Soc.
0013-4651,
146
(
5
), pp.
1952
1959
.
27.
Tseng
,
W. -T.
, and
Wang
,
Y. -L.
, 1997, “
Re-Examination of Pressure and Speed Dependences of Removal Rate During Chemical-Mechanical Polishing Processes
,”
J. Electrochem. Soc.
0013-4651,
144
(
2
), pp.
L15
L17
.
28.
Fu
,
G.
, and
Chandra
,
A.
, 2001, “
A Model for Wafer Scale Variation of Removal Rate in Chemical Mechanical Polishing Based on Elastic Pad Deformation
,”
J. Electron. Mater.
0361-5235,
30
(
4
), pp.
400
408
.
29.
Fu
,
G.
, and
Chandra
,
A.
, 2002, “
A Model for Wafer Scale Variation of Material Removal Rate in Chemical Mechanical Polishing Based on Viscoelastic Pad Deformation
,”
J. Electron. Mater.
0361-5235,
31
(
10
), pp.
1066
1073
.
30.
Fu
,
G.
, and
Chandra
,
A.
, 2005, “
The Relationship Between Wafer Surface Pressure and Wafer Backside Loading in Chemical Mechanical Polishing
,”
Thin Solid Films
0040-6090,
474
(
1–2
), pp.
217
221
.
31.
Srinivasa-Murthy
,
C.
,
Wang
,
D.
,
Beaudoin
,
S. P.
,
Bibby
,
T.
,
Holland
,
K.
, and
Cale
,
T. S.
, 1997, “
Stress Distribution in Chemical Mechanical Polishing
,”
Thin Solid Films
0040-6090,
308–309
, pp.
533
537
.
32.
Castillo-Mejia
,
D.
,
Perlov
,
A.
, and
Beaudoin
,
S.
, 2000, “
Qualitative Prediction of SiO2 Removal Rates During Chemical Mechanical Polishing
,”
J. Electrochem. Soc.
0013-4651,
147
(
12
), pp.
4671
4675
.
33.
Lin
,
Y. -Y.
, and
Lo
,
S. -P.
, 2004, “
A Study of a Finite Element Model for the Chemical Mechanical Polishing Process
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
23
(
9–10
), pp.
644
650
.
34.
Fu
,
M. -N.
, and
Chou
,
F. -C.
, 1999, “
Flow Simulation for Chemical Mechanical Planarization
,”
Jpn. J. Appl. Phys.
0021-4922,
38
, pp.
4709
4714
.
35.
Bhushan
,
M.
,
Rouse
,
R.
, and
Lukens
,
J. E.
, 1995, “
Chemical-Mechanical Polishing in Semidirect Contact Mode
,”
J. Electrochem. Soc.
0013-4651,
142
(
11
), pp.
3845
3851
.
36.
Stavreva
,
Z.
,
Zeidler
,
D.
,
Plötner
,
M.
, and
Drescher
,
K.
, 1995, “
Chemical Mechanical Polishing of Copper for Multilevel Metallization
,”
Appl. Surf. Sci.
0169-4332,
91
(
1–4
), pp.
192
196
.
37.
Wang
,
M. -T.
,
Tsai
,
M. -S.
,
Liu
,
C.
,
Tseng
,
W. -T.
,
Chang
,
T. -C.
,
Chen
,
L. -J.
, and
Chen
,
M. -C.
, 1997, “
Effects of Corrosion Environments on the Surface Finishing of Copper Chemical Mechanical Polishing
,”
Thin Solid Films
0040-6090,
308–309
, pp.
518
522
.
38.
Shan
,
L.
,
Zhou
,
C.
, and
Danyluk
,
S.
, 2001, “
Mechanical Interactions and Their Effects on Chemical Mechanical Polishing
,”
IEEE Trans. Semicond. Manuf.
0894-6507,
14
(
3
), pp.
207
213
.
39.
Zhou
,
C.
,
Shan
,
L.
,
Hight
,
J. R.
,
Ng
,
S. -H.
, and
Danyluk
,
S.
, 2002, “
Fluid Pressure and Its Effects on Chemical Mechanical Polishing
,”
Wear
0043-1648,
253
(
3–4
), pp.
430
437
.
40.
Forsberg
,
M.
, 2005, “
Effect of Process Parameters on Material Removal Rate in Chemical Mechanical Polishing of Si(1 0 0)
,”
Microelectron. Eng.
0167-9317,
77
(
3–4
), pp.
319
326
.
41.
Runnels
,
S. R.
, and
Renteln
,
P.
, 1993, “
Modeling the Effect of Polish Pad Deformation on Wafer Surface Stress Distributions During Chemical-Mechanical Polishing
,”
Dielectric Sci. Technol.
,
6
, pp.
110
121
.
42.
Thakurta
,
D. G.
,
Borst
,
C. L.
,
Schwendeman
,
D. W.
,
Gutmann
,
R. J.
, and
Gill
,
W. N.
, 2001, “
Three-Dimensional Chemical Mechanical Planarization Slurry Flow Model Based on Lubrication Theory
,”
J. Electrochem. Soc.
0013-4651,
148
(
4
), pp.
G207
G214
.
43.
Runnels
,
S. R.
, and
Eyman
,
L. M.
, 1994, “
Tribology Analysis of Chemical-Mechanical Polishing
,”
J. Electrochem. Soc.
0013-4651,
141
(
6
), pp.
1698
1701
.
44.
Sundararajan
,
S.
,
Thakurta
,
D. G.
,
Schwendeman
,
D. W.
,
Murarka
,
S. P.
, and
Gill
,
W. N.
, 1999, “
Two-Dimensional Wafer-Scale Chemical Mechanical Planarization Models Based on lubrication Theory and Mass Transport
,”
J. Electrochem. Soc.
0013-4651,
146
(
2
), pp.
761
766
.
45.
Chen
,
J. -A.
, and
Fang
,
Y. -C.
, 2002, “
Hydrodynamic Characteristics of the Thin Fluid Film in Chemical-Mechanical Polishing
,”
IEEE Trans. Semicond. Manuf.
0894-6507,
15
(
1
), pp.
39
44
.
46.
El Bediwi
,
A. B.
,
Kulnis
,
W. J.
,
Luo
,
Y.
,
Woodland
,
D.
, and
Unertl
,
W. N.
, 1995, “
Distributions of Latex Particles Deposited From Water Suspensions
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
372
, pp.
277
282
.
47.
Parisse
,
F.
, and
Allain
,
C.
, 1996, “
Shape Changes of Colloidal Suspension Droplets During Drying
,”
J. Phys. II
1155-4312,
6
, pp.
1111
1119
.
48.
Parisse
,
F.
, and
Allain
,
C.
, 1997, “
Drying of Colloidal Suspension Droplets: Experimental Study and Profile Renormalization
,”
Langmuir
0743-7463,
13
(
14
), pp.
3598
3602
.
49.
Adachi
,
E.
,
Dimitro
,
A. S.
, and
Nagayama
,
K.
, 1995, “
Stripe Patterns Formed on a Glass-Surface During Droplet Evaporation
,”
Langmuir
0743-7463,
11
(
4
), pp.
1057
1060
.
50.
Conway
,
J.
,
Korns
,
H.
, and
Fisch
,
M. R.
, 1997, “
Evaporation Kinematics of Polystyrene Bead Suspensions
,”
Langmuir
0743-7463,
13
(
3
), pp.
426
431
.
51.
Deegan
,
R. D.
,
Bakajin
,
O.
,
Dupont
,
T. F.
,
Huber
,
G.
,
Nagel
,
S. R.
, and
Witten
,
T. A.
, 1997, “
Capillary Flow as the Cause of Ring Stains From Dried Liquid Drops
,”
Nature (London)
0028-0836,
389
, pp.
827
829
.
52.
Deegan
,
R. D.
,
Bakajin
,
O.
,
Dupont
,
T. F.
,
Huber
,
G.
,
Nagel
,
S. R.
, and
Witten
,
T. A.
, 2000, “
Contact Line Deposits in an Evaporating Drop
,”
Phys. Rev. E
1063-651X,
62
(
1
), pp.
756
765
.
53.
Hisatake
,
K.
,
Tanaka
,
S.
, and
Aizawa
,
Y.
, 1993, “
Evaporation Rate of Water in a Vessel
,”
J. Appl. Phys.
0021-8979,
73
(
11
), pp.
7395
7401
.
54.
Peiss
,
C. N.
, 1989, “
Evaporation of Small Water Drops Maintained at Constant Volume
,”
J. Appl. Phys.
0021-8979,
65
(
12
), pp.
5235
5237
.
55.
Maxwell
,
J. C.
, 1990,
Scientific Papers
,
Cambridge University Press
,
Cambridge
, Vol.
2
.
56.
Dufresne
,
E. R.
,
Corwin
,
E. I.
,
Greenblatt
,
N. A.
,
Ashmore
,
J.
,
Wang
,
D. -Y.
,
Dinsmore
,
A. D.
,
Cheng
,
J. -X.
,
Xie
,
X. -S.
,
Hutchinson
,
J. W.
, and
Weitz
,
D. A.
, 2003, “
Flow and Fracture in Drying Nanoparticle Suspensions
,”
Phys. Rev. Lett.
0031-9007,
91
(
22
), p.
224501
.
57.
Tsukruk
,
V. V.
,
Ko
,
H.
, and
Peleshanko
,
S.
, 2004, “
Nanotube Surface Arrays: Weaving, Bending, and Assembling On Patterned Silicon
,”
Phys. Rev. Lett.
0031-9007,
92
(
6
), p.
065502
.
58.
Kimura
,
M.
,
Misner
,
M. J.
,
Xu
,
T.
,
Kim
,
S. -H.
, and
Russell
,
T. P.
, 2003, “
Long-Range Ordering of Diblock Copolymers Induced by Droplet Pinning
,”
Langmuir
0743-7463,
19
(
23
), pp.
9910
9913
.
59.
Smalyukh
,
I. I.
,
Zribi
,
O. V.
,
Butler
,
J. C.
,
Lavrentovich
,
O. D.
, and
Wong
,
G. C.-L.
, 2006, “
Structure and Dynamics of Liquid Crystalline Pattern Formation in Drying Droplets of DNA
,”
Phys. Rev. Lett.
0031-9007,
96
(
17
), p.
177801
.
60.
Zhu
,
Y.
, and
Yin
,
J.
, 2007, “
A Quantitative Comet Assay: Imaging and Analysis of Virus Plaques Formed With a Liquid Overlay
,”
J. Virol. Methods
0166-0934,
139
(
1
), pp.
100
102
.
61.
Soltman
,
D.
, and
Subramanian
,
V.
, 2008, “
Inkjet-Printed Line Morphologies and Temperature Control of the Coffee Ring Effect
,”
Langmuir
0743-7463,
24
(
5
), pp.
2224
2231
.
62.
Xin
,
J.
,
Cai
,
W.
, and
Tichy
,
J. A.
, 2010, “
A Fundamental Model Proposed for Material Removal in Chemical-Mechanical Polishing
,”
Wear
0043-1648,
268
(
5–6
), pp.
837
844
.
63.
van der Velden
,
P.
, 2000, “
Chemical Mechanical Polishing With Fixed Abrasives Using Different Subpads to Optimize Wafer Uniformity
,”
Microelectron. Eng.
0167-9317,
50
(
1–4
), pp.
41
46
.
64.
Sugimoto
,
F.
,
Arimoto
,
Y.
, and
Ito
,
T.
, 1995, “
Simultaneous Temperature Measurement of Wafers in Chemical Mechanical Polishing of Silicon Dioxide Layer
,”
Jpn. J. Appl. Phys.
0021-4922,
34
, pp.
6314
6320
.
65.
Chen
,
W. -C.
,
Lin
,
S. -C.
,
Dai
,
B.
, and
Tsai
,
M. -S.
, 1999, “
Chemical Mechanical Polishing of Low-Dielectric-Constant Polymers: Hydrogen Silsesquioxane and Methyl Silsesquioane
,”
J. Electrochem. Soc.
0013-4651,
146
(
8
), pp.
3004
3008
.
66.
Lin
,
S. -C.
, and
Wu
,
M. -L.
, 2002, “
A Study of the Effects of Polishing Parameters on Material Removal Rate and Nonuniformity
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
(
1
), pp.
99
103
.
67.
Thakurta
,
D. G.
,
Borst
,
C. L.
,
Schwendeman
,
D. W.
,
Gutmann
,
R. J.
, and
Gill
,
W. N.
, 2000, “
Pad Porosity, Compressibility and Slurry Delivery Effects in Chemical-Mechanical Planarization: Modeling and Experiments
,”
Thin Solid Films
0040-6090,
366
(
1–2
), pp.
181
190
.
68.
Stavreva
,
Z.
,
Zeidler
,
D.
,
Plötner
,
M.
, and
Drescher
,
K.
, 1997, “
Characteristics in Chemical-Mechanical Polishing of Copper: Comparison of Polishing Pads
,”
Appl. Surf. Sci.
0169-4332,
108
(
1
), pp.
39
44
.
You do not currently have access to this content.