This paper deals with the application of the lattice-Boltzmann method (LBM) to fluid-film lubrication. Compared with the traditional computational approach in lubrication (based on Reynolds equation), LBM does not neglect inertia forces. The implementation of LBM is less demanding than that of the Navier–Stokes solvers for complex geometric configurations. Various wall boundary conditions, as well as the multiple relaxation time model, are discussed. Bearing cavitation is approached in a simplified manner. The LBM solutions for two classic configurations are compared with the corresponding analytic and numeric solutions of the Reynolds or Navier–Stokes equations. The LBM results were satisfactory for the investigated cases.
Issue Section:
Hydrodynamic Lubrication
1.
Succi
, S.
, 2001, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond
, Oxford University Press
, New York
.2.
Yu
, D.
, Mei
, R.
, Luo
, L. -S.
, and Shyy
, W.
, 2003, “Viscous Flow Computations With the Method of Lattice Boltzmann Equation
,” Prog. Aerosp. Sci.
0376-0421, 39
(5
), pp. 329
–367
.3.
Yan
, G.
, Chen
, Y.
, and Hu
, S.
, 1999, “Simple Lattice Boltzmann Model for Simulating Flows With Shock Wave
,” Phys. Rev. E
1063-651X, 59
(1
), pp. 454
–459
.4.
Brenner
, G.
, Al-Zoubi
, A.
, Mukinovic
, M.
, Schwarze
, H.
, and Swoboda
, S.
, 2007, “Numerical Simulation of Surface Roughness Effects in Laminar Lubrication Using the Lattice-Boltzmann Method
,” ASME J. Tribol.
0742-4787, 129
(3
), pp. 603
–610
.5.
Chapman
, S.
, and Cowling
, T. G.
, 1960, The Mathematical Theory of Non-Uniform Gases
, Cambridge University Press
, London
.6.
Bhatnagar
, P.
, Gross
, E. P.
, and Krook
, M. K.
, 1954, “A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems
,” Phys. Rev.
0096-8250, 94
(3
), pp. 511
–525
.7.
He
, X.
, and Luo
, L. S.
, 1997, “Theory of the Lattice Boltzmann Method: From the Boltzmann Equation to the Lattice Boltzmann Equation
,” Phys. Rev. E
1063-651X, 56
(6
), pp. 6811
–6817
.8.
Wolf-Gladrow
, D.
, 2000, Lattice-Gas Cellular Automata and Lattice Boltzmann Models
, Springer-Verlag
, Berlin
.9.
Krüger
, T.
, Varnik
, F.
, and Raabe
, D.
, 2009, “Shear Stress in Lattice Boltzmann-Simmulations
,” Phys. Review E
, 79
(4
), p. 46704
. 0002-782010.
Qian
, Q. H.
, d’Humières
, D.
, and Lallemand
, P.
, 1992, “Lattice BGK Models for Navier–Stokes Equation
,” Europhys. Lett.
0295-5075, 17
(6
), pp. 479
–484
.11.
Chen
, S.
, Martinez
, D.
, and Mei
, R.
, 1996, “On Boundary Conditions in Lattice Boltzmann Methods
,” Phys. Fluids
1070-6631, 8
(9
), pp. 2527
–2536
.12.
He
, X.
, and Luo
, L. S.
, 1997, “Lattice Boltzmann Model for the Incompressible Navier–Stokes Equation
,” J. Stat. Phys.
0022-4715, 88
(3–4
), pp. 927
–944
.13.
d’Humières
, D.
, 1992, “Generalized Lattice-Boltzmann Equations
,” Rarefied Gas Dynamics: Theory and Simulations, Progress in Astronautics and Aeronautics
, B. D.
Shizgal
and D. P.
Weaver
, eds., AIAA
, Washington, DC
, Vol. 159
, pp. 450
–458
.14.
Lallemand
, P.
, and Luo
, L. S.
, 2000, “Theory of the Lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability
,” Phys. Rev. E
1063-651X, 61
(6
), pp. 6546
–6562
.15.
Yu
, D.
, 2002, “Viscous Flow Computations With the Lattice Boltzmann Equation Method
,” Ph.D. dissertation, University of Florida.16.
d’Humières
, D.
, Ginzburg
, I.
, Krafczyk
, M.
, Lallemand
, P.
, and Luo
, L. -S.
, 2002, “Multiple-Relaxation-Time Lattice Boltzmann Models in Three Dimensions
,” Philos. Trans. R. Soc. London, Ser. A
0962-8428, 360
, pp. 437
–451
.17.
Mei
, R.
, Luo
, L. S.
, and Shyy
, W.
, 1999, “An Accurate Curved Boundary Treatment in the Lattice Boltzmann Method
,” J. Comput. Phys.
0021-9991, 155
, pp. 307
–330
.18.
Bouzidi
, M.
, Firdaouss
, M.
, and Lallemand
, P.
, 2001, “Momentum Transfer of a Boltzmann-Lattice Fluid With Boundaries
,” Phys. Fluids
1070-6631, 13
(11
), pp. 3452
–3459
.19.
Lallemand
, P.
, and Luo
, L. S.
, 2003, “Lattice Boltzmann Method for Moving Boundaries
,” J. Comput. Phys.
0021-9991, 184
, pp. 406
–421
.20.
Guo
, Z.
, Zheng
, C.
, and Shi
, B.
, 2002, “Non-Equilibrium Extrapolation Method for Velocity and Pressure Boundary Conditions in the Lattice Boltzmann Method
,” Chin. Phys.
1009-1963, 11
(4
), pp. 366
–374
.21.
Skordos
, P. A.
, 1993, “Initial and Boundary Conditions for the Lattice Boltzmann Method
,” Phys. Rev. E
1063-651X, 48
(6
), pp. 4823
–4842
.22.
Goenka
, P.
, and Booker
, J.
, 1980, “Spherical Bearings: Static and Dynamic Analysis via the Finite Element Method
,” ASME J. Lubr. Technol.
0022-2305, 102
(3
), pp. 308
–319
.23.
Goenka
, P.
, 1984, “Dynamically Loaded Journal Bearings: Finite Element Method Analysis
,” ASME J. Tribol.
0742-4787, 106
, pp. 429
–439
.24.
Brajdic-Mitidieri
, P.
, 2005, “Advanced Modelling of Elastohydrodynamic Lubrication
,” Ph.D. dissertation, Imperial College, London.25.
Pinkus
, O.
, and Sternlicht
, B.
, 1961, Theory of Hydrodynamic Lubrication
, McGraw-Hill
, New York
.26.
Filippova
, O.
, and Hännel
, D.
, 1998, “Grid Refinement for Lattice-BGK Models
,” J. Comput. Phys.
0021-9991, 147
, pp. 219
–228
.27.
Tölke
, J.
, Freudiger
, S.
, and Krafczyk
, M.
, 2006, “An Adaptive Scheme Using Hierarchical Grids for Lattice Boltzmann Multi-Phase Flow Simulations
,” Comput. Fluids
0045-7930, 35
(8–9
), pp. 820
–830
.28.
He
, X.
, Luo
, L. S.
, and Dembo
, M.
, 1996, “Some Progress in Lattice Boltzmann Method. Part I. Nonuniform Mesh Grids
,” J. Comput. Phys.
0021-9991, 129
, pp. 357
–363
.29.
Sunder
, C. S.
, Baskar
, G.
, Babu
, V.
, and Strenski
, D.
, 2006, “A Detailed Performance Analysis of the Interpolation Supplemented Lattice Boltzmann Method on Cray T3E and Cray X1
,” Int. J. High. Perform Comput. Appl.
, 20
(4
), pp. 557
–570
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.