This paper deals with the application of the lattice-Boltzmann method (LBM) to fluid-film lubrication. Compared with the traditional computational approach in lubrication (based on Reynolds equation), LBM does not neglect inertia forces. The implementation of LBM is less demanding than that of the Navier–Stokes solvers for complex geometric configurations. Various wall boundary conditions, as well as the multiple relaxation time model, are discussed. Bearing cavitation is approached in a simplified manner. The LBM solutions for two classic configurations are compared with the corresponding analytic and numeric solutions of the Reynolds or Navier–Stokes equations. The LBM results were satisfactory for the investigated cases.

1.
Succi
,
S.
, 2001,
The Lattice Boltzmann Equation for Fluid Dynamics and Beyond
,
Oxford University Press
,
New York
.
2.
Yu
,
D.
,
Mei
,
R.
,
Luo
,
L. -S.
, and
Shyy
,
W.
, 2003, “
Viscous Flow Computations With the Method of Lattice Boltzmann Equation
,”
Prog. Aerosp. Sci.
0376-0421,
39
(
5
), pp.
329
367
.
3.
Yan
,
G.
,
Chen
,
Y.
, and
Hu
,
S.
, 1999, “
Simple Lattice Boltzmann Model for Simulating Flows With Shock Wave
,”
Phys. Rev. E
1063-651X,
59
(
1
), pp.
454
459
.
4.
Brenner
,
G.
,
Al-Zoubi
,
A.
,
Mukinovic
,
M.
,
Schwarze
,
H.
, and
Swoboda
,
S.
, 2007, “
Numerical Simulation of Surface Roughness Effects in Laminar Lubrication Using the Lattice-Boltzmann Method
,”
ASME J. Tribol.
0742-4787,
129
(
3
), pp.
603
610
.
5.
Chapman
,
S.
, and
Cowling
,
T. G.
, 1960,
The Mathematical Theory of Non-Uniform Gases
,
Cambridge University Press
,
London
.
6.
Bhatnagar
,
P.
,
Gross
,
E. P.
, and
Krook
,
M. K.
, 1954, “
A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
0096-8250,
94
(
3
), pp.
511
525
.
7.
He
,
X.
, and
Luo
,
L. S.
, 1997, “
Theory of the Lattice Boltzmann Method: From the Boltzmann Equation to the Lattice Boltzmann Equation
,”
Phys. Rev. E
1063-651X,
56
(
6
), pp.
6811
6817
.
8.
Wolf-Gladrow
,
D.
, 2000,
Lattice-Gas Cellular Automata and Lattice Boltzmann Models
,
Springer-Verlag
,
Berlin
.
9.
Krüger
,
T.
,
Varnik
,
F.
, and
Raabe
,
D.
, 2009, “
Shear Stress in Lattice Boltzmann-Simmulations
,”
Phys. Review E
,
79
(
4
), p.
46704
. 0002-7820
10.
Qian
,
Q. H.
,
d’Humières
,
D.
, and
Lallemand
,
P.
, 1992, “
Lattice BGK Models for Navier–Stokes Equation
,”
Europhys. Lett.
0295-5075,
17
(
6
), pp.
479
484
.
11.
Chen
,
S.
,
Martinez
,
D.
, and
Mei
,
R.
, 1996, “
On Boundary Conditions in Lattice Boltzmann Methods
,”
Phys. Fluids
1070-6631,
8
(
9
), pp.
2527
2536
.
12.
He
,
X.
, and
Luo
,
L. S.
, 1997, “
Lattice Boltzmann Model for the Incompressible Navier–Stokes Equation
,”
J. Stat. Phys.
0022-4715,
88
(
3–4
), pp.
927
944
.
13.
d’Humières
,
D.
, 1992, “
Generalized Lattice-Boltzmann Equations
,”
Rarefied Gas Dynamics: Theory and Simulations, Progress in Astronautics and Aeronautics
,
B. D.
Shizgal
and
D. P.
Weaver
, eds.,
AIAA
,
Washington, DC
, Vol.
159
, pp.
450
458
.
14.
Lallemand
,
P.
, and
Luo
,
L. S.
, 2000, “
Theory of the Lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability
,”
Phys. Rev. E
1063-651X,
61
(
6
), pp.
6546
6562
.
15.
Yu
,
D.
, 2002, “
Viscous Flow Computations With the Lattice Boltzmann Equation Method
,” Ph.D. dissertation, University of Florida.
16.
d’Humières
,
D.
,
Ginzburg
,
I.
,
Krafczyk
,
M.
,
Lallemand
,
P.
, and
Luo
,
L. -S.
, 2002, “
Multiple-Relaxation-Time Lattice Boltzmann Models in Three Dimensions
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
360
, pp.
437
451
.
17.
Mei
,
R.
,
Luo
,
L. S.
, and
Shyy
,
W.
, 1999, “
An Accurate Curved Boundary Treatment in the Lattice Boltzmann Method
,”
J. Comput. Phys.
0021-9991,
155
, pp.
307
330
.
18.
Bouzidi
,
M.
,
Firdaouss
,
M.
, and
Lallemand
,
P.
, 2001, “
Momentum Transfer of a Boltzmann-Lattice Fluid With Boundaries
,”
Phys. Fluids
1070-6631,
13
(
11
), pp.
3452
3459
.
19.
Lallemand
,
P.
, and
Luo
,
L. S.
, 2003, “
Lattice Boltzmann Method for Moving Boundaries
,”
J. Comput. Phys.
0021-9991,
184
, pp.
406
421
.
20.
Guo
,
Z.
,
Zheng
,
C.
, and
Shi
,
B.
, 2002, “
Non-Equilibrium Extrapolation Method for Velocity and Pressure Boundary Conditions in the Lattice Boltzmann Method
,”
Chin. Phys.
1009-1963,
11
(
4
), pp.
366
374
.
21.
Skordos
,
P. A.
, 1993, “
Initial and Boundary Conditions for the Lattice Boltzmann Method
,”
Phys. Rev. E
1063-651X,
48
(
6
), pp.
4823
4842
.
22.
Goenka
,
P.
, and
Booker
,
J.
, 1980, “
Spherical Bearings: Static and Dynamic Analysis via the Finite Element Method
,”
ASME J. Lubr. Technol.
0022-2305,
102
(
3
), pp.
308
319
.
23.
Goenka
,
P.
, 1984, “
Dynamically Loaded Journal Bearings: Finite Element Method Analysis
,”
ASME J. Tribol.
0742-4787,
106
, pp.
429
439
.
24.
Brajdic-Mitidieri
,
P.
, 2005, “
Advanced Modelling of Elastohydrodynamic Lubrication
,” Ph.D. dissertation, Imperial College, London.
25.
Pinkus
,
O.
, and
Sternlicht
,
B.
, 1961,
Theory of Hydrodynamic Lubrication
,
McGraw-Hill
,
New York
.
26.
Filippova
,
O.
, and
Hännel
,
D.
, 1998, “
Grid Refinement for Lattice-BGK Models
,”
J. Comput. Phys.
0021-9991,
147
, pp.
219
228
.
27.
Tölke
,
J.
,
Freudiger
,
S.
, and
Krafczyk
,
M.
, 2006, “
An Adaptive Scheme Using Hierarchical Grids for Lattice Boltzmann Multi-Phase Flow Simulations
,”
Comput. Fluids
0045-7930,
35
(
8–9
), pp.
820
830
.
28.
He
,
X.
,
Luo
,
L. S.
, and
Dembo
,
M.
, 1996, “
Some Progress in Lattice Boltzmann Method. Part I. Nonuniform Mesh Grids
,”
J. Comput. Phys.
0021-9991,
129
, pp.
357
363
.
29.
Sunder
,
C. S.
,
Baskar
,
G.
,
Babu
,
V.
, and
Strenski
,
D.
, 2006, “
A Detailed Performance Analysis of the Interpolation Supplemented Lattice Boltzmann Method on Cray T3E and Cray X1
,”
Int. J. High. Perform Comput. Appl.
,
20
(
4
), pp.
557
570
.
You do not currently have access to this content.