Near or partial contact sliders are designed for the areal recording density of 1Tbit/in.2 or even higher in hard disk drives. The bouncing vibration of an air bearing-slider in near or partial contact with the disk is numerically analyzed using three different nonlinear slider dynamics models. In these three models, the air bearing with contact is modeled either by using the generalized Reynolds equation modified with the Fukui–Kaneko slip correction and a recent second order slip correction for the contact situation, or using nonlinear springs to represent the air bearing. The contact and adhesion between the slider and the disk are considered either through an elastic contact model and an improved intermolecular adhesion model, respectively, or using an Ono–Yamane multi-asperity contact and adhesion model (2007, “Improved Analysis of Unstable Bouncing Vibration and Stabilizing Design of Flying Head Slider in Near-Contact Region,” ASME J. Tribol., 129, pp. 65–74.). The contact friction is calculated by using Coulomb’s law and the contact force. The simulation results from all of these models show that the slider’s bouncing vibration occurs as a forced vibration caused by the moving microwaviness and roughness on the disk surface. The disk surface microwaviness and roughness, which move into the head disk interface as the disk rotates, excite the bouncing vibration of the partial contact slider. The contact, adhesion, and friction between the slider and the disk do not directly cause a bouncing vibration in the absence of disk microwaviness or roughness.

1.
Fukui
,
S.
, and
Kaneko
,
R.
, 1988, “
Analysis of Ultra-Thin Gas Film Lubrication Based on Linearized Boltzmann Equation: First Report—Derivation of a Generalized Lubrication Equation Including Thermal Creep Flow
,”
ASME J. Tribol.
0742-4787,
110
, pp.
253
262
.
2.
Wu
,
L.
, and
Bogy
,
D. B.
, 2003, “
New First and Second Order Slip Models for the Compressible Reynolds Equation
,”
ASME J. Tribol.
0742-4787,
125
, pp.
558
561
.
3.
Huang
,
W.
, and
Bogy
,
D. B.
, 1998, “
An Investigation of a Slider Air Bearing With an Asperity Contact by a Three-Dimensional Direct Simulation Monte Carlo Method
,”
IEEE Trans. Magn.
0018-9464,
34
(
4
), pp.
1810
1812
.
4.
Ono
,
K.
, and
Yamane
,
M.
, 2007, “
Improved Analysis of Unstable Bouncing Vibration and Stabilizing Design of Flying Head Slider in Near-Contact Region
,”
ASME J. Tribol.
0742-4787,
129
, pp.
65
74
.
5.
Chen
,
D.
, and
Bogy
,
D. B.
, 2007, “
A Study of Contact Models for Slider-Disk Contact and Impact
,”
CML
Research Report No. 0702.
6.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1987, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
109
, pp.
257
263
.
7.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
, 1970, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
0020-3483,
185
, pp.
625
634
.
8.
Chen
,
D.
, and
Bogy
,
D. B.
, 2007, “
Intermolecular Force and Surface Roughness Models for Air Bearing Simulations for Sub-5 nm Flying Height Sliders
,”
Microsyst. Technol.
0946-7076,
13
(
8–10
), pp.
1211
1217
.
9.
Juang
,
J. Y.
,
Chen
,
D.
, and
Bogy
,
D. B.
, 2006, “
Alternate Air Bearing Slider Designs for Areal Density of 1 Tbit/in2
,”
IEEE Trans. Magn.
0018-9464,
42
(
2
), pp.
241
247
.
10.
Lee
,
S. -C.
, and
Polycarpou
,
A. A.
, 2005, “
Microtribodynamics of Pseudo-Contacting Head-Disk Interface Intended for 1 Tbit/in2
,”
IEEE Trans. Magn.
0018-9464,
41
(
2
), pp.
812
818
.
11.
Ono
,
K.
, and
Yamane
,
M.
, 2007, “
Experimental and Theoretical Investigation of Bouncing Vibrations of a Flying Head Slider in the Near-Contact Region
,”
ASME J. Tribol.
0742-4787,
129
, pp.
246
255
.
You do not currently have access to this content.