The main objective of this research is to analyze the variation of minimum film thickness in the inlet zone of roll-strip interface by incorporating starvation and viscous shear heating effects at high rolling speeds (520ms), reduction ratios (0.05–0.20), and slip values (varying up to 20%). An additional objective of this paper is to develop empirical relations for predictions of minimum film thicknesses (both isothermal and thermal) and maximum film temperature rise in the inlet zone of the lubricated roll strip contact as functions of roll-speed, reduction ratio, material parameter, slip, and starvation parameter. An efficient numerical method based on Lobatto quadrature technique is adopted for rigorous analysis of the present problem. The results reveal that the existence of starvation seems to be beneficial in terms of reduction in maximum film temperature rise as well as reduction in quantity of oil required for lubrication provided thin continuous film exists at the contact.

1.
Schmid
,
S. R.
, 1997, “
Hydrodynamic Segregation, Entrainment and Rejection of Oil in Emulsion Lubrication Problems
,”
ASME J. Tribol.
0742-4787,
119
, pp.
342
348
.
2.
Kubo
,
K.
,
Kagaya
,
M.
,
Sunami
,
M.
,
Wakabayashi
,
T.
, and
Watanabe
,
S.
, 1999, “
The Environmental Aspects of Lubricants
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
213
, pp.
1
12
.
3.
Barbulovic-Nad
,
L.
, and
Lemard
,
J. G.
, 2003, “
The Effect of Tallow Concentration on the Cold Rolling of Steel Strips
,”
J. Mater. Process. Technol.
0924-0136,
142
, pp.
65
71
.
4.
Bedi
,
D. S.
, and
Hillier
,
M. J.
, 1967, “
Hydrodynamic Model for Cold Strip Rolling
,”
Proc. Inst. Mech. Eng.
0020-3483,
182
, pp.
153
162
.
5.
Wilson
,
W. R. D.
, and
Walowit
,
J. A.
, 1971, “
An Isothermal Hydrodynamic Lubrication Theory for Strip Rolling With Front and Back Tension
,”
Tribology Convention
,
Institute of Mechanical Engineering
,
London
, pp.
164
172
.
6.
Avitzur
,
B.
, and
Grossman
,
G.
, 1972, “
Hydrodynamic Lubrication in Rolling of Thin Strip
,”
ASME J. Lubr. Technol.
0022-2305,
94
, pp.
317
328
.
7.
Atkins
,
A. G.
, 1974, “
Hydrodynamic Lubrication in Cold Rolling
,”
Int. J. Mech. Sci.
0020-7403,
16
(
1
), pp.
1
19
.
8.
Wilson
,
W. R. D.
,
Sakaguchi
,
Y.
, and
Schmid
,
S. R.
, 1994, “
A Mixed Flow Model for Lubrication With Emulsions
,”
Tribol. Trans.
1040-2004,
37
, pp.
543
551
.
9.
Saxena
,
S.
,
Dixit
,
P. M.
, and
Lal
,
G. K.
, 1996, “
Analysis of Cold Strip Rolling Under Hydrodynamic Lubrication
,”
J. Mater. Process. Technol.
0924-0136,
58
, pp.
256
266
.
10.
Wilson
,
W. R. D.
, and
Chang
,
D. F.
, 1996, “
Low Speed Mixed Lubrication of Bulk Metal Forming Processes
,”
ASME J. Tribol.
0742-4787,
118
, pp.
83
89
.
11.
Hsu
,
T. C.
,
Wu
,
H. M.
, and
Hung
,
C. H.
, 2001, “
The Computer Simulation of Lubricated Cold Rolling Processes
,”
Tribol. Trans.
1040-2004,
44
, pp.
191
196
.
12.
Boman
,
R.
, and
Ponthot
,
J. P.
, 2002, “
Numerical Simulation of Lubricated Contact in Rolling Processes
,”
J. Mater. Process. Technol.
0924-0136,
125–126
, pp.
405
411
.
13.
Lu
,
C.
,
Tieu
,
A. K.
, and
Jiang
,
Z.
, 2003, “
Modeling of the Inlet Zone in the Mixed Lubrication Situation of Cold Strip Rolling
,”
J. Mater. Process. Technol.
0924-0136,
140
, pp.
569
575
.
14.
Le
,
H. R.
, and
Sutcliffe
,
M. P. F.
, 2003, “
A Friction Model for Cold Strip Rolling With Two-Wavelength Surface Roughness in the “Mixed” Lubrication Regime
,”
ASME J. Tribol.
0742-4787,
125
, pp.
670
677
.
15.
Szeri
,
A. Z.
, and
Wang
,
S. H.
, 2004, “
An Elasto-Plasto-Hydrodynamic Model of Strip Rolling With Oil∕Water Emulsion Lubricant
,”
Tribol. Int.
0301-679X,
37
, pp.
169
176
.
16.
Yang
,
T. S.
, and
Lo
,
S. W.
, 2004, “
A Finite Element Analysis of Full Film Lubricated Metal Forming Process
,”
Tribol. Int.
0301-679X,
37
, pp.
591
598
.
17.
Dow
,
T. A.
,
Kannel
,
J. W.
, and
Bupara
,
S. S.
, 1975, “
A Hydrodynamic Theory for Strip Rolling Including Thermal Effects
,”
ASME J. Lubr. Technol.
0022-2305,
97
, pp.
4
13
.
18.
Wilson
,
W. R. D.
, and
Murch
,
L. E.
, 1976, “
A Refined Model for Hydrodynamic Lubrication of Strip Rolling
,”
ASME J. Lubr. Technol.
0022-2305,
98
, pp.
426
432
.
19.
Yuan
,
K.
, and
Chern
,
B. C.
, 1990, “
A Thermal Hydrodynamic Lubrication Analysis for Entrained Film Thickness in Cold Strip Rolling
,”
ASME J. Tribol.
0742-4787,
112
, pp.
128
134
.
20.
Lin
,
J. F.
, and
Jone
,
R. C.
, 1992, “
Analyses of Thermal Hydrodynamic Lubrication in High-Speed Rolling. Part I: The Effect of The Roller’s Elastic Deformation
,”
Tribol. Int.
0301-679X,
25
, pp.
329
339
.
21.
Lin
,
J. F.
, and
Horng
,
J. H.
, 1992, “
Analyses of Thermal Hydrodynamic Lubrication in High-Speed Rolling. Part II: The Effect of Non-Newtonian Viscosity Models
,”
Tribol. Int.
0301-679X,
25
, pp.
341
349
.
22.
Chung
,
Y.
, and
William
,
W. R. D.
, 1994, “
Full Film Lubrication of Strip Rolling
,”
ASME J. Tribol.
0742-4787,
116
, pp.
569
576
.
23.
Ghosh
,
M. K.
,
Pandey
,
R. K.
, and
Singh
,
P.
, 2003, “
Thermal Effect on the Film Thickness in High Speed Lubricated Cold Rolling of a Strip—An Inlet Zone Analysis
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
217
, pp.
155
165
.
24.
Tsao
,
P.
, and
Wilson
,
W. R. D.
, 1980, “
Entrainment of Lubricant in the Cold Rolling of Aluminum Rolling
,”
ISIJ Int.
0915-1559, Tokyo,
2
, pp.
1143
1157
.
25.
Schmid
,
S. R.
, and
Wilson
,
W. R. D.
, 1995, “
Lubrication of Aluminum Rolling by Oil-In-Water Emulsions
,”
Tribol. Trans.
1040-2004,
38
, pp.
452
458
.
26.
Schmid
,
S. R.
, and
Wilson
,
W. R. D.
, 1996, “
Lubrication Mechanisms for Oil-in-Water Emulsions
,”
Lubr. Eng.
0024-7154,
52
, pp.
168
175
.
27.
Hamaguchi
,
H.
,
Spikes
,
H. A.
, and
Cameron
,
A.
, 1977, “
Elastohydrodynamic Properties of Water-in-Oil Emulsions
,”
Wear
0043-1648,
43
, pp.
17
24
.
28.
Wan
,
G. T. Y.
,
Kenny
,
P.
, and
Spikes
,
H. A.
, 1984, “
Elastohydrodynamic Properties of Water Based Fire Resistant Hydraulic Fluids
,”
Tribol. Int.
0301-679X,
17
, pp.
309
315
.
29.
Shirizly
,
A.
, and
Lenard
,
J. G.
, 2000, “
Emulsions Versus Neat Oils in the Cold Rolling of Carbon Steel Strips
,”
ASME J. Tribol.
0742-4787,
122
, pp.
550
556
.
30.
Azushima
,
A.
, 1978, “
Determination of Oil Film Thickness in Rolling From the Relationship Between Surface Roughness of Strip and Roll: Investigation into Friction and Lubrication in Cold Rolling
,”
Bull. JSME
0021-3764,
21
, pp.
1402
1407
.
31.
Sharma
,
R. K.
, and
Pandey
,
R. K.
, 2006, “
An Investigation Into the Validity of the Temperature Profile Approximations Across the Film Thickness in THD Analysis of Infinitely Wide Slider Bearing
,”
Tribology Online
,
1
, pp.
19
24
.
32.
Elrod
,
H. G.
, and
Brewe
,
D. E.
, 1986, “
Thermohydrodynamic Analysis for Laminar Lubricating Films
,” NASA Technical Memorandum No. 88845.
33.
Pandey
,
R. K.
, and
Ghosh
,
M. K.
, 1996, “
Thermal Effects on Film Thickness and Traction in Rolling∕Sliding EHL Line Contacts—An Accurate Inlet Zone Analysis
,”
Wear
0043-1648,
192
, pp.
118
127
.
34.
Ghosh
,
M. K.
, and
Pandey
,
R. K.
, 1998, “
Thermal Elastohydrodynamic Lubrication of Heavily Loaded Line Contacts—An Efficient Inlet Zone Analysis
,”
ASME J. Tribol.
0742-4787,
120
, pp.
119
125
.
35.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
,
Oxford University Press
,
London
.
You do not currently have access to this content.