By applying the line integral of Barnett–Lothe tensors on oblique planes, the three-dimensional rough surface contact problem for a semi-infinite anisotropic elastic half-plane in contact with a rough rigid sphere is formulated. The conjugate gradient technique of analytical continuation was employed to determine the contact parameters. The general solutions due to varying degrees of anisotropy and mechanical boundary conditions are obtained, and examples with fiber-reinforced composites are presented.

1.
Fredholm
,
I.
, 1900, “
Sur les Equations de l’Equilibre d’un Corps Solide Elastique
,”
Acta Math.
0001-5962,
23
, pp.
1
42
.
2.
Lifshitz
,
I. M.
, and
Rozenzweig
,
L. N.
, 1947, “
On the Construction of the Green’s Tensor for the Basic Equation of the Theory of Elasticity of an Anisotropic Infinite Medium
,”
Zh. Eksp. Teor. Fiz.
0044-4510,
17
, pp.
783
791
.
3.
Synge
,
J. L.
, 1957,
The Hypercircle in Mathematical Physics
,
Cambridge University Press
,
Cambridge
.
4.
Mura
,
T.
, 1987,
Micromechanics of Defects in Solids
,
Martinus Nijhoff
,
Dordrecht
.
5.
Ting
,
T. C. T.
, and
Lee
,
V. G.
, 1997, “
The Three-Dimensional Elastostatic Green’s Function for General Anisotropic Linear Elastic Solids
,”
Q. J. Mech. Appl. Math.
0033-5614,
50
, pp.
407
426
.
6.
Stroh
,
A. N.
, 1958, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philos. Mag.
0031-8086,
3
, pp.
625
646
.
7.
Stroh
,
A. N.
, 1962, “
Steady-State Problems in Anisotropic Elasticity
,”
J. Math. Phys.
0022-2488,
41
, pp.
77
103
.
8.
Tonon
,
F.
,
Fan
,
E.
, and
Amadei
,
B.
, 2001, “
Green’s Functions and BEM formulation for 3D Anisotropic Media
,”
Comput. Struct.
0045-7949,
79
, pp.
469
482
.
9.
Wang
,
C. Y.
, 1997, “
Elastic Fields Produced by a Point Source in Solids of General Anisotropy
,”
J. Eng. Math.
0022-0833,
32
, pp.
41
52
.
10.
Willis
,
J. R.
, 1965, “
The Elastic Interaction Energy of Dislocation Loops in Anisotropic Media
,”
Q. J. Mech. Appl. Math.
0033-5614,
18
, pp.
419
433
.
11.
Pan
,
Y. C.
, and
Chou
,
T. W.
, 1976, “
Point Force Solution for an Infinite Transversely Isotropic Solid
,”
ASME Trans. J. Appl. Mech.
0021-8936,
43
, pp.
608
612
.
12.
Rongved
,
L.
, 1955, “
Force Interior to One of Two Joined Semi-Infinite Solids
,”
Proceedings of the Second Midwestern Conference on Solid Mechanics
, pp.
1
13
.
13.
Dundurs
,
J.
, and
Hetenyi
,
M.
, 1965, “
Transmission of Force Between Two Semi-Infinite Solids
,”
ASME Trans. J. Appl. Mech.
0021-8936,
32
, pp.
671
674
.
14.
Fares
,
N.
, and
Li
,
V. C.
, 1988, “
General Image Method in a Plane-Layered Elastostatic Medium
,”
ASME Trans. J. Appl. Mech.
0021-8936,
55
, pp.
781
785
.
15.
Yu
,
H. Y.
, and
Sanday
,
S. C.
, 1991, “
Elastic Fields in Joined Half-Spaces Due to Nuclei of Strain
,”
Proc. R. Soc. London, Ser. A
1364-5021,
434
, pp.
503
519
.
16.
Walpole
,
L. J.
, 1996, “
An Elastic Singularity in Joined Half-Spaces
,”
Int. J. Eng. Sci.
0020-7225,
34
, pp.
629
638
.
17.
Guzina
,
B. B.
, and
Pak
,
R. Y. S.
, 1999, “
Static Fundamental Solutions for a Bi-Material Full-Space
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
493
516
.
18.
Fares
,
N.
, 1987, “
Green’s Functions for Plane-Layered Elastostatic and Viscoelastic Regions With Application to 3D Crack Analysis
,” Ph.D. thesis, Massachusetts Institute of Technology.
19.
Pan
,
Y. C.
, and
Chou
,
T. W.
, 1979, “
Green’s Function Solutions for Semi-Infinite Transversely Isotropic Materials
,”
Int. J. Eng. Sci.
0020-7225,
17
, pp.
45
55
.
20.
Pan
,
Y. C.
, and
Chou
,
T. W.
, 1979, “
Green’s Functions for Two-Phase Transversely Isotropic Materials
,”
ASME Trans. J. Appl. Mech.
0021-8936,
46
, pp.
551
556
.
21.
Yue
,
Z. Q.
, 1995, “
Elastic Fields in Two Joined Transversely Isotropic Solids Due to Concentrated Forces
,”
Int. J. Eng. Sci.
0020-7225,
33
, pp.
351
369
.
22.
Yu
,
H. Y.
,
Sanday
,
S. C.
,
Rath
,
B. B.
, and
Chang
,
C. I.
, 1995, “
Elastic Fields Due to Defects in Transversely Isotropic Bimaterials
,”
Proc. R. Soc. London, Ser. A
1364-5021,
449
, pp.
1
30
.
23.
Liao
,
J. J.
, and
Wang
,
C. D.
, 1998, “
Elastic Solution for a Transversely Isotropic Half-Space Subjected to a Point Load
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
22
, pp.
425
447
.
24.
Wang
,
C. D.
, and
Liao
,
J. J.
, 1999, “
Elastic Solutions for a Transversely Isotropic Half-Space Subjected to Buried Asymmetric Loads
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
23
, pp.
115
139
.
25.
Gosling
,
T. J.
, and
Willis
,
J. R.
, 1994, “
A Line-Integral Representation for the Stresses Due to an Arbitrary Dislocation in an Isotropic Half-Space
,”
J. Mech. Phys. Solids
0022-5096,
42
(
8
), pp.
1199
1221
.
26.
Barnett
,
D. M.
, and
Lothe
,
J.
, 1975, “
Line Force Loadings on Anisotropic Half-Spaces and Wedges
,”
Phys. Norv.
0031-8930,
8
(
1
), pp.
13
22
.
27.
Walker
,
K. P.
, 1993, “
Fourier Integral Representation of the Green’s Function for an Anisotropic Elastic Half-Space
,”
Proc. R. Soc. London, Ser. A
1364-5021,
443
, pp.
367
389
.
28.
Qu
,
J.
, and
Xue
,
Y.
, 1998, “
Three-Dimensional Interface Cracks in Anisotropic Bimaterials: The Non-Oscillatory Case
,”
ASME Trans. J. Appl. Mech.
0021-8936,
65
, pp.
1048
1055
.
29.
Wu
,
K. C.
, 1998, “
Generalization of the Stroh Formalism to 3-Dimensional Anisotropic Elasticity
,”
J. Elast.
0374-3535,
51
, pp.
213
225
.
30.
Ting
,
T. C. T.
, 1996,
Anisotropic Elasticity: Theory and Applications
,
Oxford Science
,
New York
.
31.
Yuan
,
F. G.
,
Yang
,
S.
, and
Yang
,
B.
, 2003, “
Three-Dimensional Green’s Functions for Composite Laminates
,”
Int. J. Solids Struct.
0020-7683,
40
(
2
), p.
331
342
.
32.
Polonsky
,
I. A.
, and
Keer
,
L. M.
, 1999, “
A Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques
,”
Wear
0043-1648,
231
, pp.
206
219
.
You do not currently have access to this content.