Flying height (FH) control sliders with thermal actuation have been introduced recently in commercial products for compensating the static FH loss and reducing the risk of head-disk contacts. In the research reported here, we investigated the effects of air-bearing surface (ABS) designs on the thermal actuation. We created a three-dimensional finite element model of an entire slider with a detailed read/write transducer structure and conducted thermal-structural coupled-field analysis using velocity slip and temperature jump boundary conditions to formulate the heat transfer across the head-disk interface when a slider flies over a spinning disk. An iteration procedure was used to obtain the equilibrium solutions. Four ABS designs with distinct features were simulated. We defined five measures of merit, including protrusion rate, actuation efficiency, power consumption, pressure peak, and temperature rise of the sensor to evaluate the performance of thermal actuation. It is found that the effect of the pressure is more significant than that of the FH on the heat conduction from the slider to the disk. The efficiencies of three conventional designs decrease as the FHs are continuously reduced. A new ABS design, called “Scorpion III,” is presented and demonstrates an overall enhancement, including virtually 100% efficiency with significantly less power consumption. Transient thermal analysis showed that it requires 12ms for the temperature to reach the steady-state values, and there is a trade-off between increasing the actuation bandwidth and decreasing the power consumption.

1.
Yeack-Scranton
,
C. E.
,
Khanna
,
V. D.
,
Etzold
,
K. F.
, and
Praino
,
A. P.
, 1990, “
An Active Slider for Practical Contact Recording
,”
IEEE Trans. Magn.
0018-9464,
26
(
5
), pp.
2478
2483
.
2.
Kurita
,
M.
, and
Suzuki
,
K.
, 2004, “
Flying-Height Adjustment Technologies of Magnetic Head Sliders
,”
IEEE Trans. Magn.
0018-9464,
40
(
1
), pp.
332
336
.
3.
Suzuki
,
K.
,
Maeda
,
R.
,
Chu
,
J.
,
Kato
,
T.
, and
Kurita
,
M.
, 2003, “
An Active Head Slider Using a Piezoelectric Cantilever for In Situ Flying-Height Control
,”
IEEE Trans. Magn.
0018-9464,
39
(
2
), pp.
826
831
.
4.
Tagawa
,
N.
,
Kitamura
,
K.-I.
, and
Mori
,
A.
, 2003, “
Design and Fabrication of MEMS-Based Active Slider Using Double-Layered Composite PZT Thin Film in Hard Disk Drives
,”
IEEE Trans. Magn.
0018-9464,
39
(
2
), pp.
926
931
.
5.
Su
,
L.
,
Kurita
,
M.
,
Xu
,
J.
,
Kato
,
K.
,
Adachi
,
K.
, and
Miyake
,
Y.
, 2005, “
Static and Dynamic Characteristics of Active-Head Sliders
,”
Tribol. Int.
0301-679X,
38
(
6-7
), pp.
717
723
.
6.
Juang
,
J. Y.
, and
Bogy
,
D. B.
, 2005, “
Controlled-Flying Proximity Sliders for Head-Media Spacing Variation Suppression in Ultralow Flying Air Bearings
,”
IEEE Trans. Magn.
0018-9464,
41
(
10
), pp.
3052
3054
.
7.
Juang
,
J. Y.
, and
Bogy
,
D. B.
, 2006, “
Nonlinear Compensator Design for Active Sliders to Suppress Head-Disk Spacing Modulation in Hard Disk Drive
,”
Mechatronics
0957-4158,
11
(
3
), pp.
256
264
.
8.
Juang
,
J. Y.
,
Bogy
,
D. B.
, and
Bhatia
,
C. S.
, 2006, “
Numerical and Experimental Studies of an Al2O3-TiC Slider With a Piezoelectric Nanoactuator
,”
Proc. of ASME/JSME Joint Conference on Micromechatronics for Information and Precision Equipment (MIPE)
, Santa Clara, CA, June,
ASME
, New York.
9.
Gupta
,
B. K.
,
Young
,
K.
,
Chilamakuri
,
S. K.
, and
Menon
,
A. K.
, 2001, “
On the Thermal Behavior of Giant Magnetoresistance Heads
,”
ASME J. Tribol.
0742-4787,
123
(
2
), pp.
380
387
.
10.
Pust
,
L.
,
Rea
,
C. J. T.
, and
Gangopadhyay
,
S.
, 2002, “
Thermo-Mechanical Head Performance
,”
IEEE Trans. Magn.
0018-9464,
38
(
1
), pp.
101
106
.
11.
Yan
,
W.
, 2002, “
Thermal Pole Tip Protrusion Finite Element Analysis of Thin Film Inductive Recording Heads
,”
J. Appl. Phys.
0021-8979,
91
(
10
), pp.
7571
7573
.
12.
Wang
,
R. H.
,
Wu
,
X. Z.
,
Weresin
,
W.
, and
Ju
,
Y. S.
, 2001, “
Head Protrusion and Its Implications on Head-Disk Interface Reliability
IEEE Trans. Magn.
0018-9464,
37
(
4
), pp.
1842
1844
.
13.
Xu
,
J.
,
Kurita
,
M.
, and
Tokuyama
,
M.
, 2004, “
Thermal Analysis of a Magnetic Head
,”
IEEE Trans. Magn.
0018-9464,
40
(
4
), pp.
3142
3144
.
14.
Ju
,
Y. S.
, 2005, “
Self-Heating in Thin-Film Magnetic Recording Heads Due to Write Currents
,”
IEEE Trans. Magn.
0018-9464,
41
(
12
), pp.
4443
4448
.
15.
Aoki
,
K.
,
Hoshino
,
T.
,
Iwase
,
T.
,
Imamura
,
T.
, and
Aruga
,
K.
, 2005, “
Thermal Pole-Tip Protrusion Analysis of Magnetic Heads for Hard Disk Drives
,”
IEEE Trans. Magn.
0018-9464,
41
(
10
), pp.
3043
3045
.
16.
Nikitin
,
V.
,
Gider
,
S.
,
Tabib
,
J.
,
Hsiao
,
D.
,
Salo
,
M.
,
Sui
,
G.
,
Yuan
,
S.
,
Satoh
,
N. A.
,
Xu
,
J.
, and
Maruyama
,
Y.
, 2004, “
Spatial and Temporal Profiling of Protrusion in Magnetic Recording Heads
,”
IEEE Trans. Magn.
0018-9464,
40
(
1
), pp.
326
331
.
17.
Jang
,
E.
,
Wang
,
G.
,
Cho
,
K. Y.
, and
Lee
,
H.
, 2002, “
Heating and Cooling Effect of Giant Magnetoresistive Heads During Writing Operations
,”
J. Appl. Phys.
0021-8979,
91
(
10
), pp.
8769
8771
.
18.
Meyer
,
D. W.
,
Kupinski
,
P. E.
, and
Liu
,
J. C.
, 1999, “
Slider With Temperature Responsive Transducer Positioning
,” U. S. Patent No. 5,991,113, Nov. 23.
19.
Kurita
,
M.
,
Shiramatsu
,
T.
,
Miyake
,
K.
,
Kato
,
A.
,
Soga
,
M.
,
Tanaka
,
H.
,
Saegusa
,
S.
, and
Suk
,
M.
, 2006, “
Active Flying-Height Control Slider Using MEMS Thermal Actuator
,”
Microsyst. Technol.
0946-7076,
12
(
4
), pp.
369
375
.
20.
Juang
,
J. Y.
,
Chen
,
D.
, and
Bogy
,
D. B.
, 2006, “
Alternate Air Bearing Slider Designs for Areal Density of 1Tbit∕in2
,”
IEEE Trans. Magn.
0018-9464,
42
(
2
), pp.
241
246
.
21.
Yang
,
Y.
,
Shojaeizadeh
,
S.
,
Bain
,
J. A.
,
Zhu
,
J. G.
, and
Asheghi
,
M.
, 2004, “
Detailed Modeling of Temperature Rise in Giant Magnetoresistive Sensor During an Electrostatic Discharge Event
,”
J. Appl. Phys.
0021-8979,
95
(
11
), pp.
6780
6782
.
22.
Lee
,
S. M.
, and
Cahill
,
D. G.
, 1995, “
Thermal Conductivity of Sputtered Oxide Films
,”
Phys. Rev. B
0163-1829,
52
(
1
), pp.
253
257
.
23.
Chen
,
L.
,
Bogy
,
D. B.
, and
Strom
,
B.
, 2000, “
Thermal Dependence of MR Signal on Slider Flying State
,”
IEEE Trans. Magn.
0018-9464,
36
(
5
), pp.
2486
2489
.
24.
Juang
,
J. Y.
,
Kubotera
,
H.
, and
Bogy
,
D. B.
, 2006, “
Effects of Track-Seeking Motion on the Flying Attitudes of Ultralow Flying Sliders
,”
IEEE Trans. Magn.
0018-9464,
42
(
10
), pp.
2522
2524
.
25.
Juang
,
J. Y.
, and
Bogy
,
D. B.
, 2006, “
Design and Analysis of a Flying Height Control Slider With Thermal Nanoactuator
,” Technical Report No. 2006-004,
Computer Mechanics Lab., Department of Mechanical Engineering, University of California
, Berkeley.
26.
Juang
,
J. Y.
,
Bogy
,
D. B.
, and
Bhatia
,
C. S.
, 2007, “
Design and Dynamics of Flying Height Control Slider With Piezoelectric Nanoactuator in Hard Disk Drives
,”
ASME J. Tribol.
0742-4787,
129
(
1
), pp.
161
170
.
You do not currently have access to this content.