The contact interaction between a rough cylindrical body (i.e., with asperities) and a deformable smooth flat was investigated using the finite-element analysis. Analysis included both elastic–plastic deformation and friction. Further, the effects of several parameters of rough surface on the evolution of the contact area with increasing contact load were investigated. These were radius, number, constraint, and placement of asperities. Contact area of rough surface is smaller than its counterpart of smooth surface, and this decrease depends on number, radius, constraint, and placement of asperities. The elastic material behavior results in considerably smaller contact area than that from elastic–plastic material behavior. The evolution of contact area with increasing contact load is of the complex nature with elastic–plastic material deformation since the yielded region widens and/or deepens with increasing load depending on number, radius, and constraint of asperities. The effect of constraint on the asperity depends upon its nature (i.e., from either sides or one side) and radius of the asperity. The effects of these several parameters on the contact area versus applied load relationships are expressed in the graphical form as well as in terms of equations wherever possible.

1.
Majumder
,
S.
,
McGruer
,
N. E.
,
Adams
,
G. G.
,
Zavracky
,
P. M.
,
Morrison
,
R. H.
, and
Krim
,
G.
, 2001, “
Study of Contacts in an Electrostatically Actuated Microswitch
,”
Sens. Actuators, A
0924-4247,
93
, pp.
19
36
.
2.
Majumder
,
S.
,
McGruer
,
N. E.
,
Zavracky
,
P. M.
,
Adams
,
G. G.
,
Morrison
,
R. H.
, and
Krim
,
J.
, 1997, “
Measurement and Modeling of Surface Micromachined, Electrostatically Actuated Microswitches
,”
Proceedings Transdusers, 97, International Conference on Solid State Sensors and Actuators
,
Chicago, IL
, June 16–19, pp.
1145
1148
.
3.
Coutu
,
R. A.
, Jr.
,
Kladitis
,
P. E.
,
Starman
,
L. A.
, and
Reid
,
J. R.
, 2004, “
A Comparison of Microswitch Analytic, Finite Element, and Experimental Results
,”
Sens. Actuators, A
0924-4247,
115
, pp.
252
258
.
4.
Jonson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
5.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
295
, pp.
300
319
.
6.
Timoshenko
,
S.
, and
Goodier
,
J. N.
, 1951,
Theory of Elasticity
,
McGraw–Hill
,
New York
.
7.
Kogut
,
L.
, and
Etsion
,
I.
, 2002, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
69
(
5
), pp.
657
662
.
8.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1987, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
J. Tribol.
0742-4787,
109
, pp.
257
263
.
9.
Zhao
,
Y.
,
Maletta
,
D. M.
, and
Chang
,
L.
, 2000, “
An Asperity Microcontact Model Incorporating the Transition from Elastic Deformation to Fully Plastic Flow
,”
J. Tribol.
0742-4787,
122
, pp.
86
93
.
10.
Jacq
,
C.
,
Nelias
,
D.
,
Lormand
,
G.
, and
Girodin
,
D.
, 2003, “
Development of a Three-Dimensional Semi-Analitical Elastic-Plastic Contact Code
,”
J. Tribol.
0742-4787,
125
, pp.
653
667
.
11.
Vu-Quo
,
L.
,
Zhang
,
X.
, and
Leesburg
,
L.
, 2000, “
A Normal Force-Displacement Model for Contacting Spheres Accounting for Plastic Deformation: Force Driven Formulation
,”
ASME J. Appl. Mech.
0021-8936,
67
, pp.
363
371
.
12.
Komvopoulos
,
K.
, and
Choi
,
D.-H.
, 1992, “
Elastic Finite Element Analysis of Multi-Asperity Contacts
,”
J. Tribol.
0742-4787,
114
, pp.
823
831
.
13.
Kucharski
,
S.
,
Klimczak
,
T.
,
Polijaniuk
,
A.
, and
Kaczmarek
,
J.
, 1994, “
Finite-Elements Model for the Contact of Rough Surfaces
,”
Wear
0043-1648,
177
, pp.
1
13
.
14.
Kogut
,
L.
, and
Etsion
,
I.
, 2002, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
J. Appl. Mech.
0021-8936,
69
, pp.
657
662
.
15.
Etsion
,
I.
,
Kligerman
,
Y.
, and
Kadin
,
Y.
, 2005, “
Unloading of an Elastic-Plastic Loaded Spherical Contact
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
3716
3729
.
16.
Jackson
,
R. L.
, and
Green
,
I.
, 2005, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
J. Tribol.
0742-4787,
127
, pp.
343
354
.
17.
Kogut
,
L.
, and
Etsion
,
I.
, 2004, “
A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
126
, pp.
34
40
.
18.
Jackson
,
R.
,
Chusoipin
,
I.
, and
Green
,
I.
, 2005, “
A Finite Element Study of the Residual Stress and Deformation in Hemispherical Contacts
,”
ASME J. Tribol.
0742-4787,
127
, pp.
484
493
.
19.
Coutu
,
R. A. J.
, 2004, “
Electrostatic Radio Frequency (RF) Microelectromechanical Systems (MEMS) Switches with Metal Alloy Electric Contacts
,” Ph. D. thesis, AFIT/DS/ENG/04-05, Air Force Institute of Technology, Wright-Patterson AFB, OH.
20.
Lee
,
H.
,
Coutu
,
R. A. J.
,
Mall
,
S.
, and
Kladitis
,
P. E.
, 2005, “
Nanoindentation Technique for Characterizing Cantilever Beam Style RF Micromechanical Systems (MEMS) Switches
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
1230
1235
.
21.
ABAQUS/Analysis, 2005,
User’s Manual, Version 6.5.
,
Hibbit, Karlsson & Sorensen, Inc.
, Pawtucket, RI.
You do not currently have access to this content.