This paper proves that a generalized Hertz pressure (the product of Hertz square root and an even polynomial of degree 2n with respect to coordinates) applied over elastic half-space boundary generates a polynomial normal displacement of degree 2n+2. Polynomial surface coefficients are combinations of elliptical integrals. The equation of rigid punch surface generating this pressure is derived, as well as the conditions in which an elliptical contact occurs. For second order surfaces, n=0, these results yield all Hertz formulas, whereas new formulas are derived for contact parameters between fourth, sixth, and eight order surfaces.

1.
Hertz
,
H.
, 1895,
Uber die Berührung Fester Elasticher Körper
,
Gesammelte Werke
, Bd. 1, Leipzig, pp.
155
173
.
2.
Shtaerman
,
I.
, 1949,
Contact Problems in the Theory of Elasticity
(in Russian),
Gostehizdat
, Moscow (English Translation in 1970 at British Library, FTD-MT-24-61-70), pp.
210
–219, 182–187, 197–204, 220–
228
.
3.
Johnson
,
K. L.
, 1987,
Contact Mechanics
,
Cambridge University Press
, Cambridge, pp.
84
–88, 95–
98
.
4.
Hills
,
D. A.
,
Nowell
,
D.
, and
Sackfield
,
A.
, 1993,
Mechanics of Elastic Contacts
,
Butterworth-Heinemann
, Oxford, pp.
291
298
.
5.
Houpert
,
L.
, 2001, “
An Engineering Approach to Hertzian Contact Elasticity—Part I
,”
ASME J. Tribol.
0742-4787,
123
, pp.
582
588
.
6.
Tanaka
,
N.
, 2001, “
A New Calculation Method of Hertz Elliptical Contact Pressure
,”
ASME J. Tribol.
0742-4787,
123
, pp.
887
889
.
7.
Radchik
,
V. S.
,
Ben-Nissan
,
B.
, and
Müller
,
W. H.
, 2002, “
Theoretical Modeling of Surface Asperity Depression Into an Elastic Foundation Under Static Loading
,”
ASME J. Tribol.
0742-4787,
124
, pp.
852
856
.
8.
Galin
,
L. A.
, 1953,
Contact Problems in the Theory of Elasticity
(in Russian),
Gostehizdat
, Moscow, pp.
206
211
.
9.
Gladwell
,
G. M. L.
, 1978, “
Polynomial Solutions for an Ellipse on an Anisotropic Elastic Half-Space
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
XXXI
(
2
), pp.
251
260
.
10.
Gradinaru
,
D.
, 2006, “
Numerical Modeling in Elastic Contact Theory
,” Ph.D. thesis, University of Suceava, Romania.
11.
Rijic
,
I. M.
, and
Gradstein
,
I. S.
, 1955,
Tables of Integrals, Sums, Series and Products
(in Romanian),
Technical Publishing House
, Bucharest, p.
93
.
You do not currently have access to this content.