The classical Reynolds theory reveals that a converging gap is the first necessary condition to generate a hydrodynamic pressure in a viscous fluid film confined between two solid surfaces with a relative sliding/rolling motion. For hundreds of years, the classical lubrication mechanics has been based on the frame of the Reynolds theory with no slip assumption. Recent studies show that a large boundary slip occurs on an ultrahydrophobic surface, which results in a very small friction drag. Unfortunately, such a slip surface also produces a small hydrodynamic pressure in a fluid film between two solid surfaces. This paper studies the lubrication behavior of infinite width slider bearings involving a mixed slip surface (MSS). The results of the study indicate that any geometrical wedges (gaps), i.e., a convergent wedge, a parallel gap, and even a divergent wedge, can generate hydrodynamic pressure in an infinite slider bearing with a mixed slip surface. It is found that with an MSS, the maximum fluid load support capacity occurs at a slightly divergent wedge (roughly parallel sliding gap) for an infinite width slider bearing, but not at a converging gap as what the classical Reynolds theory predicts. Surface optimization of a parallel sliding gap with a slip surface can double the hydrodynamic load support and reduce the friction drag by half of what the Reynolds theory predicts for an optimal wedge of a traditional slider bearing.

1.
Reynolds
,
O.
, 1886, “
On the Theory of Lubrication and its Application to Mr. Beauchamp Tomer’s Experiments, Including an Experimental Determination of the Viscosity of Olive Oil
,”
Philos. Trans. R. Soc. London
0370-2316,
177
, pp.
157
167
.
2.
Cameron
,
A.
, 1958, “
The Viscosity Wedge
,”
ASLE Trans.
0569-8197,
1
, pp.
248
253
.
3.
Pit
,
R.
,
Hervet
,
H.
, and
Leger
,
L.
, 2000, “
Direct Experimental Evidence of Slip in Hexadecane: Solid Interfaces
,”
Phys. Rev. Lett.
0031-9007,
85
, pp.
980
983
.
4.
Craig
,
V. S. J.
,
Neto
,
C.
, and
Williams
,
D. R. M.
, 2001, “
Shear-Dependent Boundary Slip in an Aqueous Newtonian Liquid
,”
Phys. Rev. Lett.
0031-9007,
87
, p.
054504
.
5.
Zhu
,
Y.
, and
Granick
,
S.
, 2001, “
Rate-Dependent Slip of Newtonian Liquid at Smooth Surfaces
,”
Phys. Rev. Lett.
0031-9007,
87
, p.
096105
.
6.
Zhu
,
Y.
, and
Granick
,
S.
, 2002, “
Limits of the Hydrodynamic No-Slip Boundary Condition
,”
Phys. Rev. Lett.
0031-9007,
88
, p.
106102
.
7.
Bonaccurso
,
E.
,
Butt
,
H. J.
, and
Craig
,
V. S. J.
, 2003, “
Surface Roughness and Hydrodynamic Boundary Slip of a Newtonian Fluid in a Completely Wetting System
,”
Phys. Rev. Lett.
0031-9007,
90
, p.
144501
.
8.
Bonaccurso
,
E.
,
Kappl
,
M.
, and
Butt
,
H. J.
, 2002, “
Hydrodynamic Force Measurements: Boundary Slip of Hydrophilic Surfaces and Electrokinetic Effects
,”
Phys. Rev. Lett.
0031-9007,
88
, p.
076103
.
9.
Sun
,
M.
, and
Edner
,
C.
, 1992, “
Molecular Dynamics Study of Flow at a Fluid-Wall Interface
,”
Phys. Rev. Lett.
0031-9007,
69
, pp.
3491
3494
.
10.
Thompson
,
P. A.
, and
Troian
,
S. M.
, 1997, “
A General Boundary Condition for Liquid Flow at Solid Surfaces
,”
Nature (London)
0028-0836,
389
, pp.
360
362
.
11.
Ou
,
J.
,
Perot
,
B.
, and
Rothstein
,
P.
, 2004, “
Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces
,”
Phys. Fluids
1070-6631,
16
, pp.
4635
4643
.
12.
Wu
,
C. W.
, et al.
1992, “
Parametric Variational Principle for Viscoplastic Lubrication Model
,”
ASME J. Tribol.
0742-4787,
113
, pp.
731
735
.
13.
Wu
,
C. W.
, and
Ma
,
G. J.
, 2005, “
Abnormal Behavior of a Hydrodynamic Lubrication Journal Bearing Caused by Wall Slip
,”
Tribol. Int.
0301-679X,
38
, pp.
492
499
.
14.
Wu
,
C. W.
, and
Ma
,
G. J.
, 2005, “
On the Boundary Slip of Fluid Flow
,”
Sci. China, Ser. G
1672-1799,
G48
, pp.
178
187
.
15.
Spikes
,
H. A.
, 2003, “
The Half-Wetted bearing. Part 1: Extended Reynolds Equation
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
217
, pp.
1
14
.
16.
Spikes
,
H. A.
, 2003, “
The Half-Wetted Bearing. Part 2: Potential Application in Low Load Contacts
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
217
, pp.
15
26
.
17.
Bair
,
S.
, and
Winer
,
W. O.
, 1979, “
Shear Strength Measurements of Lubricants at High Pressure
,”
ASME J. Lubr. Technol.
0022-2305,
101
, pp.
251
256
.
18.
Bair
,
S.
, and
Winer
,
W. O.
, 1990, “
The Shear Stress Rheology of Liquid Lubricants at Pressure of 2 to 200MPa
,”
ASME J. Tribol.
0742-4787,
112
, pp.
246
252
.
19.
Salant
,
R. F.
, and
Fortier
,
A. E.
, 2004, “
Numerical Analysis of a Slider Bearing with a Heterogeneous Slip/No-Slip Surface
,”
Tribol. Trans.
1040-2004,
47
, pp.
328
334
.
20.
Salant
,
R. F.
, and
Fortier
,
A. E.
, 2005, “
Numerical Analysis of a Journal Bearing with a Heterogeneous Slip/No-Slip Surface
,”
ASME J. Tribol.
0742-4787,
127
, pp.
820
825
.
21.
Spikes
,
H.
, and
Granick
,
S.
, 2003, “
Equation for Slip of Simple Liquids at Smooth Solid Surfaces
,”
Langmuir
0743-7463,
19
, pp.
5065
5071
.
22.
Cameron
,
A.
, 1981,
Basic Lubrication Theory
,
Elli Horwood Ltd.
, Chichester.
You do not currently have access to this content.