The Greenwood and Williamson (1966) model is an elegant and often-cited paradigm for predicting the load-displacement behavior of contacting rough surfaces given the height distribution of the contacting asperities. By use of an inverse technique and available load-displacement data, this work provides an alternative method to determine the asperity distribution directly from topographic measurement and subsequent data reduction. This method produces distributions that are consistent with the Greenwood and Williamson representation of the load-displacement data and demonstrates how the asperity height distribution can evolve with loading.
Issue Section:
Technical Papers
1.
Greenwood
, J. A.
, and Williamson
, J. B. P.
, 1966
, “Contact of Nominally Flat Surfaces
,” Proc. R. Soc. London, Ser. A
, 295
, pp. 300
–319
.2.
Zhuravlev
, V. A.
, 1940
, “On the Physical Basis of the Amontons-Coulomb Law of Friction
,” Zh. Tekh. Fiz.
, 10
, pp. 1447
–1452
.3.
Archard
, J. F.
, 1957
, “Elastic Deformation and the Laws of Friction
,” Proc. R. Soc. London, Ser. A
, 243
, pp. 190
–205
.4.
Chang
, W. R.
, Etsion
, I.
, and Bogy
, D. B.
, 1987
, “An Elastic-Plastic Model for the Contact of Rough Surfaces
,” J. Tribol.
, 109
, pp. 257
–263
.5.
Mikic
, B.
, 1971
, “Analytical Studies of Contact of Nominally Flat Surfaces; Effect of Previous Loading
,” J. Lubr. Technol.
, 96
, pp. 451
–456
.6.
Golden
, J. M.
, 1976
, “The Evolution of Asperity Height Distributions of a Surface Subjected to Wear
,” Wear
, 39
, pp. 25
–44
.7.
Hollander
, A. E.
, and Lancaster
, J. K.
, 1973
, “An Application of Topographical Analysis to the Wear of Polymers
,” Wear
, 25
, 155
–170
.8.
Linz, P., 1985, Analytical and Numerical Methods for Volterra Equations, SIAM, Philadelphia.
9.
Lacey
, C.
, and Talke
, F. E.
, 1992
, “Measurement and Simulation of Partial Contact at the Head/Tape Interface
,” J. Tribol.
, 114
, pp. 646
–652
.10.
Wu
, Y.
, and Talke
, F. E.
, 1996
, “The Effect of Surface Roughness on the Head–Tape Interface
,” J. Tribol.
, 118
, pp. 376
–381
.11.
Wang
, E. L.
, Wu
, Y.
, and Talke
, F. E.
, 1996
, “Tape Asperity Compliance Measurement using a Pneumatic Method
,” IEEE Trans. Magn.
, 32
, pp. 3732
–3734
.12.
Tan
, S.
, Baugh
, E.
, and Talke
, F. E.
, 1998
, “Measurement of Nonelastic Asperity Compliance of Magnetic Tapes
,” IEEE Trans. Magn.
, 34
, pp. 1726
–1728
.13.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge.
14.
Abramowitz, M., and Stegun, I. A., 1964, Handbook of Mathematical Functions, National Bureau of Standards.
15.
Tabor., D. 1951, The Hardness of Metals, Oxford University Press, Oxford.
16.
Sanchez, D. A., 1972, Ordinary Differential Equations and Stability Theory, Dover, New York.
17.
Atkinson, K. E., 1997, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, Cambridge.
Copyright © 2005
by ASME
You do not currently have access to this content.