The CEB static friction model is extended to include asymmetric distributions of asperity heights, using the normalized one-parameter Weibull distribution. The normal contact, tangential (friction), and adhesion forces are calculated for different skewness values, and are used to obtain the static friction coefficient. It is predicted that surfaces with negative skewness experience higher static friction coefficient compared to the Gaussian case, under the same external normal load, which agrees with published data. This effect is magnified for lower external loads, as is commonly encountered in microtribological applications.
Issue Section:
Technical Notes
1.
Dowson, D., 1998, History of Tribology, 2nd ed., Professional Engineering Publishers, London.
2.
Chang
, W. R.
, Etsion
, I.
, and Bogy
, D. B.
, 1988
, “Static Friction Coefficient Model for Metallic Rough Surfaces
,” ASME J. Tribol.
, 110
, pp. 57
–63
.3.
Tabor
, D.
, 1981
, “Friction-The Present State of Our Understanding
,” ASME J. Lubr. Technol.
, 103
, pp. 169
–179
.4.
Polycarpou
, A. A.
, and Etsion
, I.
, 1998
, “Comparison of the Static Friction Sub-Boundary Lubrication Model With Experimental Measurements on Thin Film Disks
,” STLE Tribol. Trans.
, 41
(2
), pp. 217
–224
.5.
Whitehouse, D. J., 1994, Handbook of Surface Metrology, Institute of Physics Publishing, Bristol, UK.
6.
Bhushan, B., 1999, Handbook of Micro/Nanotribology, second edition, CRC Press.
7.
McCool
, J. I.
, 1992
, “Non-Gaussian Effects in Microcontact
,” Int. J. Mach. Tools Manuf.
, 32
(1
), pp. 115
–123
.8.
Yu
, N.
, and Polycarpou
, A. A.
, 2002
, “Contact of Rough Surfaces With Asymmetric Distribution of Asperity Heights
,” ASME J. Tribol.
, 124
, pp. 367
–376
.9.
Kotwal
, C. A.
, and Bhushan
, B.
, 1996
, “Contact Analysis of Non-Gaussian Surfaces for Minimum Static and Kinetic Friction and Wear
,” Tribol. Trans.
, 39
, pp. 890
–898
.10.
Hamilton
, G. M.
, 1983
, “Explicit Equations for the Stresses Beneath a Sliding Contact
,” Proceedings of the Institution of Mechanical Engineers
, 197
(C
), pp. 53
–59
.11.
Greenwood
, J. A.
, and Williamson
, J. P. B.
, 1966
, “Contact of Nominally Flat Surfaces
,” Proc. R. Soc. London, Ser. A
, 295
, pp. 300
–319
.12.
Chang
, W. R.
, Etsion
, I.
, and Bogy
, D. B.
, 1987
, “An Elastic-Plastic Model for the Contact of Rough Surfaces
,” ASME J. Tribol.
, 109
, pp. 257
–263
.13.
Chang
, W. R.
, Etsion
, I.
, and Bogy
, D. B.
, 1988
, “Adhesion Model for Metallic Rough Surfaces
,” ASME J. Tribol.
, 110
, pp. 50
–56
.14.
Derjaguin
, B. V.
, Muller
, V. M.
, and Toporov
, Y. P.
, 1975
, “Effect of Contact Deformations on the Adhesion of Particles
,” J. Colloid Interface Sci.
, 53
, pp. 314
–326
.15.
Liu
, X.
, Chetwynd
, G.
, and Gardner
, J. W.
, 1998
, “Surface Characterization of Electro-Active Thin Polymeric Film Bearings
,” Int. J. Mach. Tools Manuf.
, 38
, pp. 669
–675
.16.
Bay
, L.
, Skaarup
, S.
, West
, K.
, Mazur
, T.
et al., 2001
, “Properties of Polypyrrole Doped With Alkylbenzene Sulfonates
,” Proc. SPIE
, 4329
, pp. 101
–105
.17.
Kogut
, L.
, and Etsion
, I.
, 2003
, “A Semi-Analytical Solution for the Sliding Inception of a Spherical Contact
,” ASME J. Tribol.
, 125
, pp. 499
–506
.Copyright © 2004
by ASME
You do not currently have access to this content.