The CEB static friction model is extended to include asymmetric distributions of asperity heights, using the normalized one-parameter Weibull distribution. The normal contact, tangential (friction), and adhesion forces are calculated for different skewness values, and are used to obtain the static friction coefficient. It is predicted that surfaces with negative skewness experience higher static friction coefficient compared to the Gaussian case, under the same external normal load, which agrees with published data. This effect is magnified for lower external loads, as is commonly encountered in microtribological applications.

1.
Dowson, D., 1998, History of Tribology, 2nd ed., Professional Engineering Publishers, London.
2.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1988
, “
Static Friction Coefficient Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
,
110
, pp.
57
63
.
3.
Tabor
,
D.
,
1981
, “
Friction-The Present State of Our Understanding
,”
ASME J. Lubr. Technol.
,
103
, pp.
169
179
.
4.
Polycarpou
,
A. A.
, and
Etsion
,
I.
,
1998
, “
Comparison of the Static Friction Sub-Boundary Lubrication Model With Experimental Measurements on Thin Film Disks
,”
STLE Tribol. Trans.
,
41
(
2
), pp.
217
224
.
5.
Whitehouse, D. J., 1994, Handbook of Surface Metrology, Institute of Physics Publishing, Bristol, UK.
6.
Bhushan, B., 1999, Handbook of Micro/Nanotribology, second edition, CRC Press.
7.
McCool
,
J. I.
,
1992
, “
Non-Gaussian Effects in Microcontact
,”
Int. J. Mach. Tools Manuf.
,
32
(
1
), pp.
115
123
.
8.
Yu
,
N.
, and
Polycarpou
,
A. A.
,
2002
, “
Contact of Rough Surfaces With Asymmetric Distribution of Asperity Heights
,”
ASME J. Tribol.
,
124
, pp.
367
376
.
9.
Kotwal
,
C. A.
, and
Bhushan
,
B.
,
1996
, “
Contact Analysis of Non-Gaussian Surfaces for Minimum Static and Kinetic Friction and Wear
,”
Tribol. Trans.
,
39
, pp.
890
898
.
10.
Hamilton
,
G. M.
,
1983
, “
Explicit Equations for the Stresses Beneath a Sliding Contact
,”
Proceedings of the Institution of Mechanical Engineers
,
197
(
C
), pp.
53
59
.
11.
Greenwood
,
J. A.
, and
Williamson
,
J. P. B.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
, pp.
300
319
.
12.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
, pp.
257
263
.
13.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1988
, “
Adhesion Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
,
110
, pp.
50
56
.
14.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. P.
,
1975
, “
Effect of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
,
53
, pp.
314
326
.
15.
Liu
,
X.
,
Chetwynd
,
G.
, and
Gardner
,
J. W.
,
1998
, “
Surface Characterization of Electro-Active Thin Polymeric Film Bearings
,”
Int. J. Mach. Tools Manuf.
,
38
, pp.
669
675
.
16.
Bay
,
L.
,
Skaarup
,
S.
,
West
,
K.
,
Mazur
,
T.
et al.
,
2001
, “
Properties of Polypyrrole Doped With Alkylbenzene Sulfonates
,”
Proc. SPIE
,
4329
, pp.
101
105
.
17.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Semi-Analytical Solution for the Sliding Inception of a Spherical Contact
,”
ASME J. Tribol.
,
125
, pp.
499
506
.
You do not currently have access to this content.