We analyze the lubrication flow of a viscoelastic fluid to account for the time dependent nature of the lubricant. The material obeys the constitutive equation for Phan-Thein-Tanner fluid (PTT). An explicit expression of the velocity field is obtained. This expression shows the effect of the Deborah number (De=λU/L, λ is the relaxation time). Using this velocity field, we derive the generalized Reynolds equation for PTT fluids. This equation reduces to the Newtonian case as De0. Finally, the effect of the Deborah number on the pressure field is explored numerically in detail and the results are documented graphically.

1.
Tichy
,
J. A.
,
1996
, “
Non-Newtonian Lubrication With the Convective Maxwell Model
,”
ASME J. Tribol.
,
118
(
2
), pp.
344
349
.
2.
Sawyer
,
W. G.
, and
Tichy
,
J. A.
,
1998
, “
Non-Newtonian Lubrication With the Second-Order Fluid
,”
ASME J. Tribol.
,
120
, pp.
622
628
.
3.
Huang
,
P.
,
Li
,
Zhi-Heng
,
Meng
,
Yong-Gang
, and
Wen
,
Shi-Zhu
,
2002
, “
Study on Thin Film Lubrication With Second-Order Fluid
,”
ASME J. Tribol.
,
124
, pp.
547
552
.
4.
Phan-Thein
,
N.
, and
Tanner
,
R. I.
,
1977
, “
A New Constitutive Equation Derived From Network Theory
,”
J. Non-Newtonian Fluid Mech.
,
2
, pp.
353
365
.
5.
Bird
,
R. B.
,
Dotson
,
P. J.
, and
Johnson
,
N. L.
,
1980
, “
Polymer Solution Rheology Based on a Finitely Extensible Bead-Spring Chain Model
,”
J. Non-Newtonian Fluid Mech.
,
7
, pp.
213
235
.
6.
Giesekus
,
H.
,
1982
, “
A Simple Constitutive Equation for Polymer Based on the Concept of the Deformation Dependent Tensorial Mobility
,”
J. Non-Newtonian Fluid Mech.
,
11
, pp.
69
109
.
7.
Quinzani
,
L.
,
Armstrong
,
R. C.
, and
Brown
,
R. A.
,
1995
, “
Use of Coupled Birefringence and LDV Studies of Flow Through a Planar Contraction to Test Constitutive Equations for Concentrated Polymer Solutions
,”
J. Rheol.
,
39
, pp.
1201
1228
.
8.
Baaijens
,
F. P. T.
,
1993
, “
Numerical Analysis of Start-Up Planar and Axisymmetric Contraction Flows Using Multi-Mode Differential Constitutive Models
,”
J. Non-Newtonian Fluid Mech.
,
48
, pp.
147
180
.
9.
Azaiez
,
J.
,
Guenette
,
R.
, and
Ai¨t-Kadi
,
A.
,
1996
, “
Numerical Simulation of Viscoelastic Flows Through a Planar Contraction
,”
J. Non-Newtonian Fluid Mech.
,
62
, pp.
253
277
.
10.
Bolach
,
H.
,
Townsend
,
P.
, and
Webster
,
M. F.
,
1996
, “
On Vortex Development in Viscoelastic Expansion and Contraction Flows
,”
J. Non-Newtonian Fluid Mech.
,
65
, pp.
133
149
.
11.
White
,
S. A.
, and
Baird
,
D. G.
,
1988
, “
Numerical Simulation Studies of the Planar Entry Flow of Polymer Melts
,”
J. Non-Newtonian Fluid Mech.
,
30
, pp.
47
71
.
12.
Phan-Thein
,
N.
,
1978
, “
A Nonlinear Network Viscoelastic Model
,”
J. Rheol.
,
22
, pp.
259
283
.
13.
O’Brien, S. B. G., and Schwartz, L. W., 2002, “Theory and Modeling of Thin Film Flows,” Encyclopedia of Surface and Colloid Science, pp. 5283–5297.
You do not currently have access to this content.