A numerical model is developed to analyze the influence of thermal deformations on the performance of a radially grooved thrust washer. The analysis couples the flow phenomena (including cavitation) in the lubricant with the heat transfer in both the fluid and solid media, as well as with the thermally induced deformations in the solid parts. The finite element method (both two-dimensional and three-dimensional, with linear and quadratic shape functions) is used to solve the Reynolds equation for flow, the energy equation for temperature and the thermo-elasticity equations for deformations in the solid. Grid coupling is achieved by using a Newton-Raphson iteration. Realistic boundary conditions and geometry are used for the fluid and solid domains. The results show that, for the case of a properly shaped stator, the thermal deformations can lead to an increase in bearing performance.

1.
Yu
,
T.
, and
Sadeghi
,
F.
,
2001
, “
Groove Effects on Thrust Washer Lubrication
,”
ASME J. Tribol.
,
123
(
1
), pp.
295
304
.
2.
Yu
,
T.
, and
Sadeghi
,
F.
,
2002
, “
Thermal Effects in Thrust Washer Lubrication
,”
ASME J. Tribol.
,
124
(
1
), pp.
166
177
.
3.
Christopherson
,
D. G.
,
1942
, “
A New Mathematical Method for the Solution of Film Lubrication Problems
,”
Proc. Inst. Mech. Eng.
,
146
, pp.
126
135
.
4.
Bayada, G., and Chambat, M., 1986, “Sur Quelques Mode´lisations de la Zone de Cavitation en Lubrication Hydrodynamique,” J. de Me´canique the´orique et applique´, 5(5), pp. 703–729.
5.
Jakobsson, B., and Floberg, L., 1957, “The Finite Journal Bearings Considering Vaporization,” Trans. Chalmers Univ. Technol., Gothenburg, Sweden, 190, pp. 1–116.
6.
Olsson, K. O., 1965, “Cavitation in Dynamically Loaded Bearings,” Trans. Chalmers Univ. Technol., Gothenburg, Sweden, 308, pp. 1–60.
7.
Elrod
,
H. G.
,
1981
, “
A Cavitation Algorithm
,”
ASME J. Lubr. Technol.
,
103
, pp.
350
354
.
8.
Brewe
,
D. E.
,
1986
, “
Theoretical Modeling of Vapor Cavitation in Dynamically Loaded Journal Bearings
,”
ASME J. Tribol.
,
108
, pp.
628
638
.
9.
Vijayaraghavan
,
D.
, and
Keith
,
T. G.
,
1989
, “
Development and Evaluation of a Cavitation Algorithm
,”
Tribol. Trans.
,
32
(
2
), pp.
225
233
.
10.
Vijayaraghavan
,
D.
,
1995
, “
An Efficient Numerical Procedure for Thermohydrodynamic Analysis of Cavitating Bearings
,”
ASME J. Tribol.
,
108
, pp.
555
563
.
11.
Goenka
,
P. K.
,
1984
, “
Dynamically Loaded Journal Bearings: Finite Element Method Analysis
,”
ASME J. Tribol.
,
106
, pp.
429
439
.
12.
Murty, K. G., 1974, “Note on a Bard-type scheme for Solving the Complementarity Problems,” Opsearch, 11, pp. 123–130.
13.
Paranjpe
,
R. S.
, and
Goenka
,
P. K.
,
1990
, “
Analysis of Crankshaft Bearings Using a Mass-Conserving Algorithm
,”
STLE Tribol. Trans.
,
33
(
3
), pp.
333
344
.
14.
Kumar
,
A.
, and
Booker
,
J. F.
,
1991
, “
A Finite Element Cavitation Algorithm: Application/Validation
,”
ASME J. Tribol.
,
113
, pp.
255
261
.
15.
Kumar
,
A.
, and
Booker
,
J. F.
,
1991
, “
A Finite Element Cavitation Algorithm
,”
ASME J. Tribol.
,
113
, pp.
276
286
.
16.
Bayada
,
G.
,
Chambat
,
M.
, and
El Alaoui
,
M.
,
1990
, “
Variational Formulations and Finite Element Algorithms for Cavitation Problems
,”
ASME J. Tribol.
,
112
, pp.
398
403
.
17.
Monmousseau
,
P.
,
Fillon
,
M.
, and
Frene
,
J.
,
1998
, “
Transient TEHD study of Tilting-Pad Journal Bearings—Application to Bearing Seizure
,”
ASME J. Tribol.
,
122
, pp.
181
191
.
18.
Shi
,
F.
, and
Wang
,
Q.
,
1998
, “
A Mixed-TEHD Model for Journal-Bearing Conformal Contacts—Part I: Model Formulation and Approximation of Heat Transfer Considering Asperity Contact
,”
ASME J. Tribol.
,
120
, pp.
198
205
.
19.
Shi
,
F.
, and
Wang
,
Q.
,
1998
, “
A Mixed-TEHD Model for Journal-Bearing Conformal Contacts—Part II: Contact and Performance Analyses
,”
ASME J. Tribol.
,
120
, pp.
206
213
.
20.
Zhang
,
C.
,
2002
, “
TEHD Behavior of Non-Newtonian Dynamically Loaded Journal Bearings in Mixed Lubrication for Direct Problem
,”
ASME J. Tribol.
,
124
, pp.
178
185
.
21.
Cameron, A., 1958, “The Viscosity Wedge,” Trans. Am Soc. Lubric. Eng., 1(2), pp. 248–253.
22.
Cameron, A., and Wood, W. L., 1958, “Parallel Surface Thrust Bearing,” Trans. Am Soc. Lubric. Eng., 1(2), pp. 254–258.
23.
Ettles
,
C.
, and
Cameron
,
A.
,
1965
, “
The Action of Parallel Surface Thrust Bearing
,”
Proc. Inst. Mech. Eng.
,
180
, pp.
61
75
.
24.
Ettles, C., Seyler, J., and Bottenschein, M., 2002, “Some Effects of Start-Up and Shut-Down on Thrust Bearing Assemblies in Hydro-Generators,” ASME/STLE Int’l Trib. Conf., ASME Paper 2002-TRIB-102, ASME, New York.
25.
Christie
,
I.
,
Griffith
,
D. F.
,
Mitchell
,
A. R.
, and
Zienkiewicz
,
O. C.
,
1976
, “
Finite Element Methods for Second Order Differential Equations With Significant First Derivatives
,”
Int. J. Numer. Methods Eng.
,
10
, pp.
1389
1396
.
26.
Heinrich
,
J. C.
,
Huyakorn
,
P. S.
,
Zienkiewicz
,
O. C.
, and
Mitchell
,
A. R.
,
1977
, “
An Upwind Finite Element Scheme for Two-Dimensional Convective Transport Equation
,”
Int. J. Numer. Methods Eng.
,
11
, pp.
131
143
.
27.
Heinrich
,
J. C.
, and
Zienkiewicz
,
O. C.
,
1977
, “
Quadratic Finite Element Schemes for Two-Dimensional Convective-Transport Problems
,”
Int. J. Numer. Methods Eng.
,
11
, pp.
1831
1844
.
You do not currently have access to this content.