The elasto-plastic normal contact of fractal surfaces is investigated. To study the influence of several surface parameters like fractal dimension and resolution, the surfaces are numerically generated using a special form of the structure function which is motivated by measurements of real rough surfaces. The contact simulation uses an iterative elastic halfspace solution based on a variational principle. A simple modification allows also the approximative solution of elasto-plastic contact problems. The influence of different surface parameters is studied with respect to the load-area relationship and the load-gap relationship. The simulations show that for realistic surface parameters the deformation is always in the plastic range.

1.
Bowden
,
F. P.
,
1957
, “
A Review of the Friction of Solids
,”
Wear
,
1
, pp.
333
346
.
2.
Archard
,
J. F.
,
1957
, “
Elastic Deformation and the Laws of Friction
,”
Proc. R. Soc. London, Ser. A
,
243
, pp.
190
205
.
3.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
, pp.
300
319
.
4.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1967
, “
The Elastic Contact of Rough Spheres
,”
ASME J. Appl. Mech.
,
34
, pp.
153
159
.
5.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1971
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
, pp.
625
633
.
6.
Nayak
,
P. R.
,
1971
, “
Random Process Model of Rough Surfaces
,”
ASME J. Lubr. Technol.
,
93
, pp.
398
407
.
7.
Whitehouse
,
D. J.
, and
Archard
,
J. F.
,
1970
, “
The Properties of Random Surfaces of Significance in Their Contact
,”
Proc. R. Soc. London, Ser. A
,
316
, pp.
97
121
.
8.
Whitehouse
,
D. J.
, and
Phillips
,
M. J.
,
1978
, “
Discrete Properties of Random Surfaces
,”
Philos. Trans. R. Soc. London, Ser. A
,
290
, pp.
267
298
.
9.
Whitehouse
,
D. J.
, and
Phillips
,
M. J.
,
1982
, “
Two-Dimensional Discrete Properties of Random Surfaces
,”
Philos. Trans. R. Soc. London, Ser. A
,
305
, pp.
441
468
.
10.
Greenwood
,
J. A.
,
1984
, “
A Unified Theory of Surface Roughness
,”
Proc. R. Soc. London, Ser. A
,
393
, pp.
133
157
.
11.
Poon
,
C. Y.
, and
Bhushan
,
B.
,
1995
, “
Comparison of Surface Roughness Measurements by Stylus Profiler, AFM and Non-Contact Optical Profiler
,”
Wear
,
190
, pp.
76
88
.
12.
Mandelbrot, B., 1983, The Fractal Geometry of Nature, Freeman, New York.
13.
Gagnepain
,
J. J.
, and
Roques-Carmes
,
C.
,
1986
, “
Fractal Approach to Two-Dimensional and Three-Dimensional Surface Roughness
,”
Wear
,
109
, pp.
119
126
.
14.
Ling, F. F., and Calabrese, S. J., 1986, “On Fractal Dimension of Engineering Surfaces,” Approaches to Modeling of Friction and Wear, F. F. Ling and C. H. T. Pan, eds., Springer, New York.
15.
Ling
,
F. F.
,
1987
, “
Scaling Law for Contoured Length of Engineering Surfaces
,”
J. Appl. Phys.
,
62
, pp.
2570
2572
.
16.
He
,
L.
, and
Zhu
,
J.
,
1997
, “
The Fractal Character of Processed Metal Surfaces
,”
Wear
,
208
, pp.
17
24
.
17.
Ju
,
Y.
, and
Farris
,
T. N.
,
1996
, “
Spectral Analysis of Two-Dimensional Contact Problems
,”
ASME J. Tribol.
,
118
, pp.
320
328
.
18.
Stanley
,
H. M.
, and
Kato
,
T.
,
1997
, “
An FFT-Based Method for Rough Surface Contact
,”
ASME J. Tribol.
,
119
, pp.
481
485
.
19.
Majumdar
,
A.
, and
Tien
,
C. L.
,
1990
, “
Fractal Characterization and Simulation of Rough Surfaces
,”
Wear
,
136
, pp.
313
327
.
20.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1990
, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME J. Tribol.
,
112
, pp.
205
216
.
21.
Tian
,
X.
, and
Bhushan
,
B.
,
1996
, “
A Numerical Three-Dimensional Model for the Contact of Rough Surfaces by Variational Principle
,”
ASME J. Tribol.
,
118
, pp.
33
42
.
22.
Ren
,
N.
, and
Lee
,
S. C.
,
1993
, “
Contact Simulation of Three-Dimensional Rough Surfaces Using Moving Grid Method
,”
ASME J. Tribol.
,
115
, pp.
597
601
.
23.
Ren
,
N.
, and
Lee
,
S. C.
,
1994
, “
The Effects of Surface Roughness and Topography on the Contact Behavior of Elastic Bodies
,”
ASME J. Tribol.
,
116
, pp.
804
811
.
24.
Panagiotopoulos, P. D., and Panagouli, O. K., 1993, “Unilateral Contact and Friction in Fractal Interfaces,” Contact Mechanics-Computational Techniques, M. H. Aliabadi and C. A. Brebbia, eds., Computational Mechanics Publications, Southampton, pp. 353–360.
25.
Panagiotopoulos
,
P. D.
,
Panagouli
,
O. K.
, and
Mistakidis
,
E. S.
,
1994
, “
Fractal Geometry in Structures. Numerical Methods for Convex Energy Problems
,”
Int. J. Solids Struct.
,
31
, pp.
2211
2228
.
26.
Ciavarella
,
M.
, and
Demelio
,
G.
,
2001
, “
Elastic Multiscale Contact of Rough Surfaces: Archard’s Model Revisited and Comparison with Modern Fractal Models
,”
ASME J. Appl. Mech.
,
68
, pp.
496
498
.
27.
Borri-Brunetto, M., Carpinteri, A., and Chiaia, B., 1998, “Lacunarity of the Contact Domain Between Elastic Bodies with Rough Boundaries,” PROBAMAT-21st Century: Probabilities and Materials, G. Frantziskonis, ed., Kluwer, Dordrecht, pp. 45–66.
28.
Ciavarella
,
M.
,
Demelio
,
G.
,
Barber
,
J. R.
, and
Jang
,
Y. H.
,
2000
, “
Linear Elastic Contact of the Weierstrass Profile
,”
Proc. R. Soc. London, Ser. A
,
456
, pp.
387
405
.
29.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
, pp.
1
11
.
30.
Warren
,
T. L.
, and
Krajcinovic
,
D.
,
1996
, “
Random Cantor Set Models for the Elastic-Perfectly Plastic Contact of Rough Surfaces
,”
Wear
,
196
, pp.
1
15
.
31.
Poon
,
C. Y.
, and
Sayles
,
R. S.
,
1994
, “
Numerical Contact Model of a Smooth Ball on an Anisotropic Rough Surface
,”
ASME J. Tribol.
,
116
, pp.
194
201
.
32.
Thomas
,
T. R.
, and
Sayles
,
R. S.
,
1977
, “
Stiffness of Machine Tool Joints: A Random-Process Approach
,”
ASME J. Eng. Ind.
,
99
, pp.
250
256
.
33.
Thomas, T. R., 1982, Rough Surfaces, Longman, London, New York.
34.
Sayles
,
R. S.
, and
Thomas
,
T. R.
,
1978
, “
Surface Topography as a Nonstationary Random Process
,”
Nature (London)
,
271
, pp.
431
434
.
35.
Willner, K., 2001, “Surface Models for Contact Laws,” Computational Methods in Contact Mechanics V, J. Dominguez and C. A. Brebbia, eds., WIT Press, Southampton, pp. 3–10.
36.
Peitgen, H.-O., and Barnsley, M. F., eds., 1988, The Science of Fractal Images, Springer, New York.
37.
Ganti
,
S.
, and
Bhushan
,
B.
,
1995
, “
Generalized Fractal Analysis and Its Applications to Engineering Surfaces
,”
Wear
,
180
, pp.
17
34
.
38.
Willner, K., 2000, “Contact Laws for Rough Surfaces,” Zeitschrift fu¨r angewandte Mathematik und Mechanik, 80, pp. S73–S76.
39.
Berry
,
M. V.
, and
Blackwell
,
T. M.
,
1981
, “
Diffractal Echoes
,”
J. Phys. A
,
14
, pp.
3101
3110
.
40.
Kikuchi, N., and Oden, J. T., 1988, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA.
You do not currently have access to this content.