The Greenwood and Williamson microcontact model of rough surfaces is modified to include the presence of a surface layer which is stiffer and harder than the substrate. The axisymmetric contact between a rigid spherical asperity and an elastic layered halfspace is analyzed numerically and correction factors for the contact area, load and the maximum von Mises stress are approximated to a closed form by using curve fits of the numerical results. The correction factors for the contact area and load are applied to the GW model to reflect the effect of the finite layer thickness and the substrate material. The correction factor for the maximum von Mises stress is used to calculate the plasticity index for layered surfaces. Parametric calculation of the ratio of plastic contact area to real contact area is carried out for a TiN-coated steel surface. The modified GW model is compared with a more rigorous real surface model and the validity of the present model is discussed. When the layer thickness is sufficiently large, the influence of the soft substrate can be neglected. A simple criterion for realizing the contact free of the effect of the substrate is proposed.

1.
Kimura
,
Y.
,
1992
, “
Updating the Fracture Theory of Wear
,”
J. Phys. D
,
25
, pp.
A177–A181
A177–A181
.
2.
Bowden, F. P., and Tabor, D., 1954, Friction and Lubrication of Solids, Part I, Oxford University Press.
3.
Nuri
,
K. A.
, and
Halling
,
J. A.
,
1975
, “
The Normal Approach Between Rough Flat Surfaces in Contact
,”
Wear
,
32
, pp.
81
93
.
4.
Halling
,
J.
, and
Nuri
,
K. A.
,
1985
, “
The Elastic Contact of Rough Surfaces and Its Importance in the Reduction of Wear
,”
Proc. Instn. Mech. Engrs., Pt. C
,
199
, pp.
139
144
.
5.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
The Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
, pp.
300
319
.
6.
Peterson, M. B., and Romalingam, S., 1980, “Coatings for Tribological Applications,” Fundamentals of Friction and Wear of Materials., American Society for Metals, pp. 331–372.
7.
Hintermann
,
H. E.
,
1984
, “
Adhesion, Friction and Wear of Thin Hard Coatings
,”
Wear
,
100
, pp.
381
397
.
8.
Komvopoulos
,
K.
,
Saka
,
N.
, and
Suh
,
N. P.
,
1987
, “
The Role of Hard Layers in Lubricated and Dry Sliding
,”
ASME J. Tribol.
,
109
, pp.
223
231
.
9.
Komvopoulos
,
K.
,
1989
, “
Elastic-Plastic Finite Element Analysis of Indented Layered Media
,”
ASME J. Tribol.
,
111
, pp.
430
439
.
10.
Onions
,
R. A.
, and
Archard
,
J. F.
,
1973
, “
The Contact of Surfaces Having a Random Structure
,”
J. Phys. D
,
6
, pp.
289
304
.
11.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Thomas
,
T. R.
,
1975
, “
The Elastic Contact of a Rough Surface
,”
Wear
,
35
, pp.
87
111
.
12.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Keogh
,
G. P.
,
1979
, “
Strongly Anisotropic Rough Surfaces
,”
ASME J. Lubr. Technol.
,
101
, pp.
15
20
.
13.
McCool
,
J. I.
,
1986
, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
,
107
, pp.
37
60
.
14.
McCool
,
J. I.
,
2000
, “
Extending the Capability of the Greenwood Williamson Microcontact Model
,”
ASME J. Tribol.
,
122
, pp.
496
502
.
15.
Nogi
,
T.
, and
Kato
,
T.
,
1997
, “
Influence of a Hard Surface Layer on the Limit of Elastic Contact-Part I: Analysis Using a Real Surface Model
,”
ASME J. Tribol.
,
119
, pp.
493
500
.
16.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press.
17.
Hamilton
,
G. M.
, and
Goodman
,
L. E.
,
1966
, “
The Stress Field Created by a Circular Sliding Contact
,”
ASME J. Appl. Mech.
,
33
, pp.
371
376
.
18.
Chen
,
W. T.
, and
Engel
,
P. A.
,
1972
, “
Impact and Contact Stress Analysis in Multilayer Media
,”
Int. J. Solids Struct.
,
8
, pp.
1257
1281
.
19.
Chen
,
W. T.
,
1971
, “
Computation of Stresses and Displacements in a Layered Elastic Medium
,”
Int. J. Eng. Sci.
,
9
, pp.
775
800
.
20.
Sayles
,
R. S.
, and
Thomas
,
T. R.
,
1979
, “
Measurements of the Statistical Microgeometry of Engineering Surfaces
,”
ASME J. Lubr. Technol.
,
101
, pp.
409
418
.
You do not currently have access to this content.