Frictional heating due to the relative motion of contacting surfaces causes temperature rise and thermal distortion, which in turn affects the contact geometry and pressure distribution. A fast and effective method is presented for the calculation of the normal surface displacement of an elastic halfspace due to arbitrary transient surface heating. The method uses Fourier-transformed Green’s functions (frequency response functions), found in the closed form by using the approach of Seo and Mura and the heat conduction analyses of Carslaw and Jaeger. The frequency response functions are shown analytically to be the frequency domain representations of the Green’s functions given by Barber. The formulation for the surface normal displacement is in the form of three-dimensional convolution integrals (over surface and time) of the arbitrary transient heat flux and the Green’s functions. Fourier transforms of these convolution integrals are taken, avoiding the Green’s-function singularities and giving a simple multiplication between the transformed heat flux and the (known) frequency response functions. The discrete convolution–fast Fourier transform (DC-FFT) algorithm is applied for accurate and efficient calculations of the normal surface displacement from the frequency response functions for an arbitrary transient heat input. The combination of the frequency-domain formulation and the DC-FFT algorithm makes the solution of transient thermoelastic deformation extremely fast and convenient.

1.
Barber
,
J. R.
,
1969
, “
Thermoelastic Instabilities in the Sliding of Conforming Solids
,”
Proc. R. Soc. London, Ser. A
,
312
, pp.
381
394
.
2.
Dow
,
T. A.
, and
Burton
,
R. A.
,
1972
, “
Thermoelastic Instabilities in the Absence of Wear
,”
Wear
,
19
, pp.
315
328
.
3.
Johnson, K. L., 1996, Contact Mechanics, Cambridge University Press.
4.
Lee
,
S. C.
, and
Cheng
,
H. S.
,
1991
, “
Scuffing Theory Modeling and Experimental Correlations
,”
ASME J. Tribol.
,
113
, pp.
327
334
.
5.
Gao
,
J. Q.
,
Lee
,
S. C.
,
Ai
,
X. L.
, and
Nixon
,
H.
,
2000
, “
An FFT-Based Transient Flash Temperature Model for General 3-D Rough Surface Contacts
,”
ASME J. Tribol.
,
122
, pp.
519
523
.
6.
Tian
,
X.
, and
Kennedy
,
F. E.
,
1994
, “
Maximum and Average Flash Temperatures in Sliding Contacts
,”
ASME J. Tribol.
,
116
, pp.
167
173
.
7.
Barber
,
J. R.
,
1972
, “
Distortion of the Semi-infinite Solid Due to Transient Surface Heating
,”
Int. J. Mech. Sci.
14
, pp.
377
393
.
8.
Barber
,
J. R.
,
1987
, “
Thermoelastic Distortion of the Half-space
,”
J. Therm. Stresses
,
10
, pp.
221
228
.
9.
Barber
,
J. R.
, and
Wright
,
K.
,
1967
, “
The Thermal Distortion Due To a Uniform Circular Heat Source on the Surface of a Semi-infinite Solid
,”
Int. J. Mech. Sci.
,
9
, pp.
811
815
.
10.
Ling, F. F., 1973, Surface Mechanics, New York, John Wiley and Sons.
11.
Ju
,
F. D.
, and
Huang
,
J. H.
,
1982
, “
Heat Checking in the Contact Zone of a Bearing Seal (A Two-Dimensional Model of A Single Moving Asperity)
,”
Wear
,
79
, pp.
107
118
.
12.
Yevtushenko
,
A. A.
, and
Kovalenko
,
Y. V.
,
1995
, “
The Interaction of Frictional Heating and Wear at a Transient Sliding Contact
,”
J. Appl. Math. Mech.
,
59
, No.
3
, pp.
459
466
.
13.
Yevtushenko
,
A. A.
, and
Ivanyk
,
E.
,
1995
, “
Determination of Heat and Thermal Distortion in Braking Systems
,”
Wear
,
185
, pp.
159
165
.
14.
Shi
,
F.
, and
Wang
,
Q.
,
1998
, “
A Method of Thermal Influence Functions and Its Applications in Tribological Studies
,”
STLE Tribol. Trans.
,
41
, No.
3
, pp.
350
358
.
15.
Shi
,
F.
, and
Wang
,
Q.
,
1998
, “
A Mixed-TEHD Model for Journal Bearing Conformal Contacts, Part I: Model Formulation and Approximation of Heat Transfer Considering Asperity Contacts
,”
ASME J. Tribol.
,
120
, pp.
198
205
.
16.
Khonsari
,
M. M.
, and
Wang
,
S. H.
,
1991
, “
On the Fluid-Solid Interaction in Reference to Thermoelastohydrodynamic Analysis of Journal Bearings
,”
ASME J. Tribol.
,
113
, pp.
398
404
.
17.
Wang
,
Q.
, and
Liu
,
G.
,
1999
, “
A Thermoelastic Asperity Contact Model Considering Steady-State Heat Transfer
,”
STLE Tribol. Trans.
,
42
, pp.
763
770
.
18.
Liu
,
G.
, and
Wang
,
Q.
,
2000
, “
Thermoelastic Asperity Contacts, Frictional Shear, and Paramter Correlations
,”
ASME J. Tribol.
,
122
, pp.
300
307
.
19.
Liu, G., Wang, Q., and Liu, S. B., 2000, “A Three-Dimensional Thermal-Mechanical Asperity Contact Model for Two Nominally Flat Surfaces in Contact,” ASME Paper No. 2000-Trib-44.
20.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Oxford University Press, London.
21.
Mindlin, R. D., 1953, “Force at a Point in the Interior of a Semi-Infinite Solid,” Proceedings of the First Midwestern Conference On Solid Mechanics, pp. 55–59.
22.
Seo
,
K.
, and
Mura
,
T.
,
1979
, “
The Elastic Field in a Half Space Due to Ellipsoidal Inclusions with Uniform Dilatational Eigenstrains
,”
ASME J. Appl. Mech.
,
46
, pp.
568
572
.
23.
Sneddon, I. N., 1951, Fourier Transforms, McGraw Hill Book Company, New York.
24.
Gupta
,
P. K.
, and
Walowit
,
J. A.
,
1974
, “
Contact Stresses Between an Elastic Cylinder and a Layered Elastic Solid
,”
ASME J. Lubr. Technol.
,
96
, No.
2
, pp.
250
257
.
25.
O’Sullivan
,
T. C.
, and
King
,
R. B.
,
1988
, “
Sliding Contact Stress Field Due to a Spherical Indenter on a Layered Elastic Medium
,”
ASME J. Tribol.
,
110
, pp.
235
240
.
26.
Ju
,
Y.
, and
Farris
,
T. N.
,
1996
, “
Spectral Analysis of Two-Dimensional Contact Problems
,”
ASME J. Tribol.
,
118
, pp.
320
328
.
27.
Nogi
,
T.
, and
Kato
,
T.
,
1997
, “
Influence of a Hard Surface Layer on the Limit of Elastic Contact-Part I: Analysis Using a Real Surface Model
,”
ASME J. Tribol.
,
119
, pp.
493
500
.
28.
Hu
,
Y. Z.
,
Barber
,
G. C.
, and
Zhu
,
D.
,
1999
, “
Numerical Analysis for the Elastic Contact of Real Rough Surfaces,” STLE
Tribol. Trans.
,
42
, No.
3
, pp.
443
452
.
29.
Ju
,
Y.
, and
Farris
,
T. N.
,
1997
, “
FFT Thermoelastic Solutions for Moving Heat Sources
,”
ASME J. Tribol.
,
119
, pp.
156
162
.
30.
Polonsky
,
I. A.
, and
Keer
,
L. M.
,
2000
, “
A Fast and Accurate Method for Numerical Analysis of Elastic Layered Contacts
,”
ASME J. Tribol.
,
122
, pp.
30
35
.
31.
Polonsky
,
I. A.
, and
Keer
,
L. M.
,
2000
, “
Fast Methods for Solving Rough Contact Problems: A Comparative Study
,”
ASME J. Tribol.
,
122
, pp.
36
41
.
32.
Liu
,
S. B.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
, No.
1–2
, pp.
101
110
.
33.
Campbell, G. A., and Foster, R. M., 1931, Fourier Integrals for Practical Applications, Bell Telephone Laboratories, New York.
34.
Timoshenko, S., and Goodier, J. N., 1970, Theory of Elasticity, McGraw-Hill, New York.
35.
Gradshteyn, I. S., and Ryzhik, I. M., 1994, Table of Integrals, Series, and Products, 5th ed, Academic Press, Boston.
36.
Sneddon, I. N., 1972, The Use of Integral Transforms, McGraw-Hill Book Company, New York.
You do not currently have access to this content.