An efficient and accurate finite element procedure is specially devised to analyze the performance of gas-lubricated spiral groove face seals operating at high speeds. The procedure is based on the Galerkin weighted residual method with a new class of high-order shape functions, which are derived from an approximate solution to the nonlinear Reynolds equation within an element. Static and dynamic performance characteristics, such as seal opening force, flow leakage and frequency-dependent dynamic force coefficients, are determined to study the effects of high speeds on the behavior of spiral groove gas face seals.

1.
Gas Lubricated Mechanical Face Seals, 1997, Burgmann Dichtungswerke GmbH & Co., Wolfratshausen, Germany.
2.
Whipple, R. T. P., 1958, “The Inclined Groove Bearing,” AERE Report T/T 622 (revised), United Kingdom Atomic Energy Authority, Research Group, Atomic Energy Establishment, Harwell, Berkshire.
3.
Malanoski
,
S. B.
, and
Pan
,
C. H. T.
,
1965
, “
The Static and Dynamic Characteristics of the Spiral-Grooved Thrust Bearing
,”
ASME J. Basic Eng.
,
87
, pp.
547
558
.
4.
Muijderman, E. A., 1966, Spiral Groove Bearings, Philips Technical Library, Springer-Verlag, New York.
5.
Reddi
,
M. M.
, and
Chu
,
T. Y.
,
1970
, “
Finite Element Solution of the Steady-State Compressible Lubrication Problem
,”
ASME J. Lubr. Technol.
,
92
, pp.
495
503
.
6.
Satomi
,
T.
, and
Lin
,
G.
,
1993
, “
Design Optimization of Spirally Grooved Thrust Air Bearings for Polygon Mirror Laser Scanners
,”
JSME International Journal, Series C
, ,
36
, No.
3
, pp.
393
399
.
7.
Bonneau
,
D.
,
Huitric
,
J.
, and
Tournerie
,
B.
,
1993
, “
Finite Element Analysis of Grooved Gas Thrust Bearings and Grooved Gas Face Seals
,”
ASME J. Tribol.
,
115
, pp.
348
354
.
8.
Tournerie, B., Huitric, J., Bonneau, D., and Frene, J., 1994, “Optimization and Performance Prediction of Grooved Face Seals for Gases and Liquids,” Fourteenth International Conference on Fluid Sealing, Italy, pp. 351–365.
9.
Hernandez
,
P.
, and
Boudet
,
R.
,
1995
, “
Modelling of the Behavior of Dynamical Gas Seals: Calculation with a Finite Element Method Implicitly Assuring the Continuity of Flow
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
209
, pp.
195
201
.
10.
Zirkelback
,
N. L.
, and
San Andre´s
,
L.
,
1999
, “
Effect of Frequency Excitation on the Force Coefficients of Spiral Groove Gas Seals
,”
ASME J. Tribol.
,
121
, pp.
853
863
.
11.
Heinrich
,
J. C.
,
Huyakorn
,
P. S.
,
Zienkiewicz
,
O. C.
, and
Mitchell
,
A. R.
,
1977
, “
An Upwind Finite Element Scheme for Two-dimensional Convective Transport Equation
,”
Int. J. Numer. Methods Eng.
,
11
, pp.
131
143
.
12.
Hughes
,
T. J. R.
,
1978
, “
A Simple Scheme for Developing “Upwind” Finite Elements
,”
Int. J. Numer. Methods Eng.
,
12
, pp.
1359
1365
.
13.
Faria
,
M. T. C.
, and
San Andre´s
,
L.
,
2000
, “
On the Numerical Modeling of High-Speed Hydrodynamic Gas Bearings
,”
ASME J. Tribol.
,
122
, pp.
124
130
.
14.
Bathe, K. J., 1982, Finite Element Procedures in Engineering Analysis, Prentice Hall, Englewood Cliffs, New Jersey.
15.
Faria, M. T. C., 1999, Finite Element Analysis of High-Speed Grooved Gas Bearings, Ph.D. dissertation, Texas A&M University; College Station, TX.
16.
Stewart, G. W., 1996, Afternotes on Numerical Analysis, SIAM books, Philadelphia, PA.
17.
Gabriel
,
R. P.
,
1994
, “
Fundamentals of Spiral Groove Noncontacting Face Seals
,”
STLE Lubr. Eng.
, March, pp.
215
224
.
18.
Constantinescu
,
V. N.
, and
Dimofte
,
F.
,
1987
, “
On the Influence of the Mach Number on Pressure Distribution in Gas Lubricated Step Bearings
,”
Rev. Roum. Sci. Tech., Ser. Mec. Appl.
,
32
, No.
1
, pp.
51
66
.
19.
van der Stegen, R. H. M., 1997, Numerical Modelling of Self-Acting Gas Lubricated Bearings with Experimental Verification, Ph.D. dissertation, The University of Twente, The Netherlands.
You do not currently have access to this content.