It is well known that for a reduced Reynolds number greater than unity, inertia forces have a dominant effect in the transport equations, thus rendering the classical lubrication equation inapplicable. The so called “bulk flow” system of equations is then the appropriate mathematical model for describing the flow in bearing and seals operating at The difficulty in integrating this system of equations is that one has to deal with coupled pressure and velocity fields. Analytic methods have a very narrow application range so a numerical method has been proposed by Launder and Leschziner in 1978. It represents a natural extrapolation of the successful SIMPLE algorithm applied to the bulk flow system of equations. The algorithm used rectangular, staggered control volumes and represented the state of the art at that moment. In the present work we introduced a method using triangular control volumes. The basic advantage of triangles versus rectangles is that non rectangular domains can be dealt without any a priori limitation. The present paper is focused on the description of the discretized equations and of the solution algorithm. Validations for bearings and seals operating in incompressible, laminar and turbulent flow regime are finally proving the accuracy of the method.
Skip Nav Destination
e-mail: mihai.arghir@lms.univ-poitiers.fr
e-mail: jean.frene@lms.univ-poitiers.fr
Article navigation
January 2001
Technical Papers
A Triangle Based Finite Volume Method for the Integration of Lubrication’s Incompressible Bulk Flow Equations
Mihai Arghir,
e-mail: mihai.arghir@lms.univ-poitiers.fr
Mihai Arghir
LMS, Universite´ de Poitiers, URF Sciences SP2MI, Te´le´port 2, Blvd. Pierre et Marie Curie, BP 30719, 86962 Futuroscope Chasseneuil Cedex, France
Search for other works by this author on:
Jean Fre^ne
e-mail: jean.frene@lms.univ-poitiers.fr
Jean Fre^ne
LMS, Universite´ de Poitiers, URF Sciences SP2MI, Te´le´port 2, Blvd. Pierre et Marie Curie, BP 30719, 86962 Futuroscope Chasseneuil Cedex, France
Search for other works by this author on:
Mihai Arghir
LMS, Universite´ de Poitiers, URF Sciences SP2MI, Te´le´port 2, Blvd. Pierre et Marie Curie, BP 30719, 86962 Futuroscope Chasseneuil Cedex, France
e-mail: mihai.arghir@lms.univ-poitiers.fr
Jean Fre^ne
LMS, Universite´ de Poitiers, URF Sciences SP2MI, Te´le´port 2, Blvd. Pierre et Marie Curie, BP 30719, 86962 Futuroscope Chasseneuil Cedex, France
e-mail: jean.frene@lms.univ-poitiers.fr
Contributed by the Tribology Division for publication in the ASME JOURNAL OF TRIBOLOGY. Manuscript received by the Tribology Division March 6, 2000; revised manuscript received July 25, 2000. Associate Editor: J. L. Streator.
J. Tribol. Jan 2001, 123(1): 118-124 (7 pages)
Published Online: July 25, 2000
Article history
Received:
March 6, 2000
Revised:
July 25, 2000
Citation
Arghir, M., and Fre^ne, J. (July 25, 2000). "A Triangle Based Finite Volume Method for the Integration of Lubrication’s Incompressible Bulk Flow Equations ." ASME. J. Tribol. January 2001; 123(1): 118–124. https://doi.org/10.1115/1.1326444
Download citation file:
Get Email Alerts
Related Articles
Towards a Reynolds Equation for Gas Lubricated Bearings When Contact Occurs
J. Tribol (April,2002)
A Simultaneous Numerical Solution for the Lubrication and Dynamic Stability of Noncontacting Gas Face Seals
J. Tribol (April,2001)
A Segregated SUPG/FEM for THDL Analysis In High Speed Slider Bearings With Injection Effect
J. Tribol (October,2001)
A Lattice-Boltzmann Approach to Fluid Film Lubrication
J. Tribol (April,2010)
Related Proceedings Papers
Related Chapters
Hydrodynamic Lubrication
Design of Mechanical Bearings in Cardiac Assist Devices
Friction, Bearings, and Lubrication
Engineering Practice with Oilfield and Drilling Applications
Contact Laws
Contact in Structural Mechanics: A Weighted Residual Approach