The apparent friction force and electric contact resistance at the magnetic head-disk interface were measured simultaneously for textured and untextured disks lubricated with perfluoropolyether films of different thicknesses. The initial stick time, representing the time between the application of a driving torque and the initiation of interfacial slip, was determined based on the initial rise of the apparent friction force and the abrupt increase of the electric contact resistance. Relatively thin lubricant films yielded very short initial stick times and low static friction coefficients. However, for a film thickness comparable to the equivalent surface roughness, relatively long initial stick times and high static friction coefficients were observed. The peak value of the apparent friction coefficient was low for thin lubricant films and increased gradually with the film thickness. The variations of the initial stick time, static friction coefficient, and peak friction coefficient with the lubricant film thickness and surface roughness are interpreted in the context of a new physical model of the lubricated interface. The model accounts for the lubricant coverage, effective shear area, saturation of interfacial cavities, limited meniscus effects, and the increase of the critical shear stress of thin liquid films due to the solid-like behavior exhibited at a state of increased molecular ordering. [S0742-4787(00)03101-5]

1.
Liu
,
C. C.
, and
Mee
,
P. B.
,
1983
, “
Stiction at the Winchester Head-Disk Interface
,”
IEEE Trans. Magn.
,
MAG-19
, pp.
1659
1661
.
2.
Matthewson
,
M. J.
, and
Mamin
,
H. J.
,
1988
, “
Liquid Mediated Adhesion of Ultra-Flat Solid Surfaces
,”
Adhesion Sol. Mat. Res. Soc. Symp. Proc.
,
119
, pp.
87
92
.
3.
Li, Z., Rabinowicz, E., and Saka, N., 1989, “The Stiction Between Magnetic Recording Heads and Thin Film Disks,” Tribology and Mechanics of Magnetic Storage Systems, STLE, Park Ridge, IL. SP-26, pp. 64–70.
4.
Streator
,
J. L.
,
Bhushan
,
B.
, and
Bogy
,
D. B.
,
1991
, “
Lubricant Performance in Magnetic Thin Film Disks With Carbon Overcoat—Part I: Dynamic and Static Friction
,”
ASME J. Tribol.
,
113
, pp.
22
31
.
5.
Li
,
Y.
, and
Menon
,
A. K.
,
1994
, “
A Theoretical Analysis of Breakaway Friction Measurement
,”
ASME J. Tribol.
,
116
, pp.
280
286
.
6.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1997
, “
Friction Force, Contact Resistance, and Lubricant Shear Behavior at the Magnetic Head-Disk Interface During Starting
,”
ASME J. Tribol.
,
119
, pp.
830
839
.
7.
Gui
,
J.
, and
Marchon
,
B.
,
1995
, “
A Stiction Model for a Head-Disk Interface of a Rigid Disk Drive
,”
J. Appl. Phys.
,
78
, pp.
4206
4217
.
8.
McFarlane
,
J. S.
, and
Tabor
,
D.
,
1950
, “
Adhesion of Solids and the Effect of Surface Films
,”
Proc. R. Soc. London, Ser. A
,
202
, pp.
224
243
.
9.
Homola, A. M., 1991, “The Role of Interfacial Forces and Lubrication in Thin-Film Magnetic Media,” Adv. Info. Stor. Syst., Vol. 1, ASME, New York, NY, pp. 279–308.
10.
Chan
,
D. Y. C.
, and
Horn
,
R. G.
,
1985
, “
The Drainage of Thin Liquid Films Between Solid Surfaces
,”
J. Chem. Phys.
,
83
, pp.
5311
5324
.
11.
Gee
,
M. L.
,
McGuiggan
,
P. M.
,
Israelachvili
,
J. N.
, and
Homola
,
A. M.
,
1990
, “
Liquid to Solidlike Transitions of Molecularly Thin Films Under Shear
,”
J. Chem. Phys.
,
93
, pp.
1895
1906
.
12.
van Alsten
,
J.
, and
Granick
,
S.
,
1990
, “
Tribology Studied Using Atomically Smooth Surfaces
,”
Tribol. Trans.
,
33
, pp.
436
446
.
13.
Monfort
,
J. P.
, and
Hadziioannou
,
G.
,
1988
, ““
Equilibrium” and Dynamic Behavior of Thin Films of a Perfluorinated Polyether
,”
J. Chem. Phys.
,
88
, pp.
7187
7196
.
14.
Magda
,
J. J.
,
Tirrell
,
M.
, and
Davis
,
H. T.
,
1985
, “
Molecular Dynamics of Narrow, Liquid-Filled Pores
,”
J. Chem. Phys.
,
83
, pp.
1888
1901
.
15.
Schoen
,
M.
,
Diestler
,
D. J.
, and
Cushman
,
J. H.
,
1987
, “
Fluids in Micropores, I. Structure of a Simple Classical Fluid in a Slit-Pore
,”
J. Chem. Phys.
,
87
, pp.
5464
5476
.
16.
Mate
,
C. M.
,
Lorenz
,
M. R.
, and
Novotny
,
V. J.
,
1989
, “
Atomic Force Microscopy of Polymeric Liquid Films
,”
J. Chem. Phys.
,
90
, pp.
7550
7555
.
17.
Novotny
,
V. J.
,
1990
, “
Migration of Liquid Polymers on Solid Surfaces
,”
J. Chem. Phys.
,
92
, pp.
3189
3196
.
18.
Toney
,
M. F.
,
Mate
,
C. M.
, and
Pocker
,
D.
,
1998
, “
Calibrating ESCA and Ellipsometry Measurements of Perfluoropolyether Lubricant Thickness
,”
IEEE Trans. Magn.
,
34
, pp.
1774
1776
.
19.
Gitis, N. V. Volpe, L., and Sonnenfeld, R., 1991, “Long-Term Stiction at the Magnetic Thin-Film Disk-Slider Interface,” Adv. Info. Stor. Syst., Vol. 3, ASME, New York, NY, pp. 91–105.
20.
Bair
,
S.
, and
Winer
,
W. O.
,
1990
, “
The High Shear Stress Rheology of Liquid Lubricants at Pressures of 2 to 200 MPa
,”
ASME J. Tribol.
,
112
, pp.
246
253
.
21.
Novotny
,
V. J.
,
Hussla
,
I.
,
Turlet
,
J.-M.
, and
Philpott
,
M. R.
,
1989
, “
Liquid Polymer Conformation on Solid Surfaces
,”
J. Chem. Phys.
,
90
, pp.
5861
5868
.
22.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1994a
, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part I—Elastic Contact and Heat Transfer Analysis
,”
ASME J. Tribol.
,
116
, pp.
812
823
.
23.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1994b
, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part II—Multiple Domains. Elastoplastic Contacts and Applications
,”
ASME J. Tribol.
,
116
, pp.
824
832
.
24.
Bowden, F. P., and Tabor, D., 1951, The Friction and Lubrication of Solids, Clarendon Press, Oxford, U.K.
25.
Mate
,
C. M.
,
1992
, “
Application of Disjoining and Capillary Pressure to Liquid Lubricant Films in Magnetic Recording
,”
J. Appl. Phys.
,
72
, pp.
3084
3090
.
26.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1967
, “
The Elastic Contact of Rough Spheres
,”
ASME J. Appl. Mech.
,
34
, pp.
153
159
.
27.
Cameron, A., 1981, Basic Lubrication Theory, 3rd ed., Wiley, New York, NY, pp. 181–183.
28.
Lu
,
C. J.
,
Bogy
,
D.
, and
Kaneko
,
R.
,
1994
, “
Nanoindentation Hardness Tests Using a Point Contact Microscope
,”
ASME J. Tribol.
,
116
, pp.
175
180
.
29.
Wei
,
B.
, and
Komvopoulos
,
K.
,
1996
, “
Nanoscale Indentation Hardness and Wear Characterization of Hydrogenated Carbon Thin Films
,”
ASME J. Tribol.
,
118
, pp.
431
438
.
30.
Majumdar
,
A.
, and
Tien
,
C. L.
,
1991
, “
Fractal Network Model for Contact Conductance
,”
ASME J. Heat Transfer
,
113
, pp.
516
525
.
You do not currently have access to this content.