High adhesion is often encountered at contact interfaces of miniaturized devices, known as microelectromechanical systems, due to the development of capillary, electrostatic, and van der Waals attractive forces. In addition, deformation of contacting asperities on opposing surfaces produces a repulsive interfacial force. Permanent surface adhesion (referred to as stiction) occurs when the total interfacial force is attractive and exceeds the micromachine restoring force. In the present study, a three-dimensional fractal topography description is incorporated into an elastic-plastic contact mechanics analysis of asperity deformation. Simulation results revealing the contribution of capillary, electrostatic, van der Waals, and asperity deformation forces to the total interfacial force are presented for silicon/silicon and aluminum/aluminum material systems and different mean surface separation distances. Results demonstrate a pronounced effect of surface roughness on the micromachine critical stiffness required to overcome interfacial adhesion.

1.
Alley, R. L., Cuan, G. J., Howe, R. T., and Komvopoulos, K., 1992, “The Effect of Release-Etch Processing on Surface Microstructure Stiction,” Proc. IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 21–25, 1992, pp. 202–207.
2.
Apte, R. B., Sandejas, F. S. A., Banyai, W. C., and Bloom, D. M., 1994, “Deformable Grating Light Valves for High Resolution Displays,” Proc. IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 13–16, 1994, pp. 1–6.
3.
Ausloos
M.
, and
Berman
D. H.
,
1985
, “
A Multivariate Weierstrass-Mandelbrot Function
,”
Proc. Roy. Soc. (London), Series A
, Vol.
400
, pp.
331
350
.
4.
Bhushan
B.
,
1985
, “
The Real Area of Contact in Polymeric Magnetic Media II: Experimental Data Analysis
,”
ASLE Transactions
, Vol.
28
, pp.
181
197
.
5.
Bhushan
B.
, and
Majumdar
A.
,
1992
, “
Elastic-Plastic Contact Model for Bifractal Surfaces
,”
Wear
, Vol.
153
, pp.
53
64
.
6.
Courtney, T. H., 1990, Mechanical Behavior of Materials, McGraw-Hill, New York, NY, pp. 48 and 60.
7.
Greenwood
J. A.
, and
Williamson
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. Roy. Soc. (London), Series A
, Vol.
295
, pp.
300
319
.
8.
Hao
H. W.
,
Baro’
A. M.
, and
Sa’enz
J. J.
,
1991
, “
Electrostatic and Contact Forces in Force Microscopy
,”
Journal of Vacuum Science and Technology B
, Vol.
9
, pp.
1323
1328
.
9.
Hong
K. T.
,
Imadojemu
H.
, and
Webb
R. L.
,
1994
, “
Effects of Oxidation and Surface Roughness on Contact Angle
,”
Experimental Thermal and Fluid Science
, Vol.
8
, pp.
279
285
.
10.
Houston
M. R.
,
Howe
R. T.
,
Komvopoulos
K.
, and
Maboudian
R.
,
1995
, “
Diamond-Like Carbon Films for Silicon Passivation in Microeiectromechanicai Devices
,”
Mater. Res. Soc. Symp. Proc.
, Vol.
383
, pp.
391
402
.
11.
Israelachvili, J. N., 1992, Intermolecular and Surface Forces, Academic Press, London, U.K., pp. xviii, 186–187, 314, and 331.
12.
Johnson, K. L., 1987, Contact Mechanics, Cambridge University Press, Cambridge, U.K., pp. 90–104.
13.
Komvopoulos
K.
,
1996
, “
Surface Engineering and Microtribology for Microeiectromechanicai Systems
,”
Wear
, Vol.
200
, pp.
305
327
.
14.
Komvopoulos
K.
, and
Yan
W.
,
1997
, “
A Fractal Analysis of Stiction in Microeiectromechanicai Systems
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
119
, pp.
391
400
.
15.
Legtenberg, R., Berenschot, E., Elwenspoek, M., and Fluitman, J., 1995, “Electrostatic Curved Electrode Actuators,” Proc. IEEE Micro Electro Mechanical Systems, Amsterdam, The Netherlands, Jan. 29–Feb. 2, 1995, pp. 37–42.
16.
Majumdar
A.
, and
Bhushan
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
113
, pp.
1
11
.
17.
Mandelbrot, B. B., 1983, The Fractal Geometry of Nature, Freeman, New York, NY, pp. 1–83 and 116–118.
18.
Metals Handbook, 1990, Vol. 2, ASM International, Metals Park, OH, p. 1100.
19.
Nayak
P. R.
,
1973
, “
Random Process Model of Rough Surfaces in Plastic Contact
,”
Wear
, Vol.
26
, pp.
305
333
.
20.
Press, W. H., Teukolsky, S. A., Vettering, W. T., and Flannery, B. P., 1992, Numerical Recipes in FORTRAN: The Art of Scientific Computing, Cambridge University Press, Cambridge, U.K., pp. 123–158.
21.
Properties of Silicon, 1988, Institution of Electrical Engineers, London, U.K., pp. 21 and 654.
22.
Pullen
J.
, and
Williamson
J. B. P.
,
1972
, “
On the Plastic Contact of Rough Surfaces
,”
Proc. Roy. Soc. (London), Series A
, Vol.
327
, pp.
159
173
.
23.
Sampsell
J. B.
,
1994
, “
Digital Micromirror Device and Its Application to Projection Displays
,”
Journal of Vacuum Science and Technology B
, Vol.
12
, pp.
3242
3246
.
24.
Scheeper
P. R.
,
Voorthuyzen
J. A.
,
Olthuis
W.
, and
Bergveld
P.
,
1992
, “
Investigation of Attractive Forces Between PECVD Silicon Nitride Microstructures and an Oxidized Silicon Substrate
,”
Sensors and Actuators A
, Vol.
30
, pp.
231
239
.
25.
Tang
W. C.
,
Nguyen
T.-C. H.
, and
Howe
R. T.
,
1989
, “
Laterally Driven Polysilicon Resonant Microstructures
,”
Sensors and Actuators A
, Vol.
20
, pp.
25
32
.
26.
Torii, A., Sasaki, M., Hane, K., and Okuma, S., 1993, “Adhesive Force of the Microstructures Measured by the Atomic Force Microscope,” Proc. IEEE Micro Electro Mechanical Systems, Fort Lauderdale, FL, Feb. 7–10, 1993, pp. 111–116.
27.
Wang
S.
, and
Komvopoulos
K.
,
1994
a, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part I—Elastic Contact and Heat Transfer Analysis
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
116
, pp.
812
823
.
28.
Wang
S.
, and
Komvopoulos
K.
,
1994
b, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part II–Multiple Domains, Elastoplastic Contacts and Applications
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
116
, pp.
824
832
.
29.
Wang
S.
, and
Komvopoulos
K.
,
1995
, “
A Fractal Theory of the Temperature Distribution at Elastic Contacts of Fast Sliding Surfaces
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
117
, pp.
203
215
.
30.
Yan
W.
, and
Komvopoulos
K.
,
1998
, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
Journal of Applied Physics
, Vol.
84
, pp.
3617
3624
.
This content is only available via PDF.
You do not currently have access to this content.