The strong adherence (stiction) of adjacent surfaces is a major design concern in microelectromechanical systems (MEMS). Advances in micromachine technology greatly depend on basic understanding of microscale stiction phenomena. An analysis of the different stiction micromechanisms and the elastic deformation of asperities at MEMS interfaces is developed using a two-dimensional fractal description of the surface topography. The fractal contact model is scale independent since it is based on parameters invariant of the sample area size and resolution of measuring instrument. The influence of surface roughness, relative humidity, applied voltage, and material properties on the contributions of the van der Waals, electrostatic, and capillary forces to the total stiction force is analyzed in light of simulation results. It is shown that the effects of surface roughness and applied voltage on the maximum stiction force are significantly more pronounced than that of material properties. Results for the critical pull-off stiffness versus surface roughness are presented for different material properties and microstructure stand-free surface spacings. The present analysis can be used to determine the minimum stiffness of microdevices required to prevent stiction in terms of surface roughness, apparent contact area, relative humidity, applied voltage, and material properties.

1.
Adamson, A. W., 1982, Physical Chemistry of Surfaces, John Wiley, New York, NY, pp. 6–8, 54–55, 338–354, and 581–582.
2.
Alley, R. L., Cuan, G. J., Howe, R. T., and Komvopoulos, K., 1992, “The Effect of Release-Etch Processing on Surface Microstructure Stiction,” Proc. IEEE Solid-Stale Sensor and Actuator Workshop, Hilton Head Island, SC, June 21-25, 1992, pp. 202-207.
3.
Alley, R. L., Mai, P., Komvopoulos, K., and Howe, R. T., 1993, “Surface Roughness Modification of Interfacial Contacts in Polysilicon Microstructures,” Proc. 7th Int. Conf. Solid-State Sensors and Actuators, Transducers ’93, Yokohama, Japan, June 7-10, 1993, pp. 288–291.
4.
Apte, R. B., Sandejas, F. S. A., Banyai, W. C., and Bloom, D. M., 1994, “Deformable Grating Light Valves for High Resolution Displays,” Proc. IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 13-16, 1994, pp. 1–6.
5.
Berry
M. V.
, and
Lewis
Z. V.
,
1980
, “
On the Weierstrass-Mandelbrot Fractal Function
,”
Proc. Roy. Soc. London
, Series A, Vol.
370
, pp.
459
484
.
6.
Courtney, T. H., 1990, Mechanical Behavior of Materials, McGraw-Hill, New York, NY, pp. 48, 55, and 60.
7.
Duffin, W. J., 1990, Electricity and Magnetism, McGraw-Hill, London, U.K., pp. 104-126.
8.
Greenwood
J. A.
, and
Williamson
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. Roy. Soc. London
, Series A, Vol.
295
, pp.
300
319
.
9.
Guckel, H., Burns, D. W., Tilmans, H. A. C., DeRoo, D. W., and Rutigliano, C. R., 1988, “Mechanical Properties of Fine Grained Polysilicon: The Repeatability Issue,” Proc. IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 6-9, 1988, pp. 96–99.
10.
Gupta
P. K.
, and
Cook
N. H.
,
1972
, “
Junction Deformation Modes for Asperities in Sliding Interaction
,”
Wear
, Vol.
20
, pp.
73
87
.
11.
Hermansson, K., Lindberg, U., Ho¨k, B., and Palmskog, G., 1991, “Wetting Properties of Silicon Surfaces,” Proc. 6th Int. Conf. Solid-State Sensors and Actuators, Transducers ’91, San Francisco, CA, June 24-27, 1991, pp. 193–196.
12.
Houston, M. R., Howe, R. T., Komvopoulos, K., and Maboudian, R., 1995, “Diamond-Like Carbon Films for Silicon Passivation in Microelectromechanical Devices,” Mater Res. Soc. Symp. Proc., Vol. 383, pp. 391–402.
13.
Israelachvili, J. N., 1992, Intermolecular and Surface Forces, Academic Press, London, U.K., pp. xviii, 176–212, and 312–337.
14.
Johnson, K. L., 1987, Contact Mechanics, Cambridge University Press, Cambridge, U.K., pp. 95–99 and 129–134.
15.
Krupp
H.
,
1967
, “
Particle Adhesion: Theory and Experiment
,”
Adv. Coll. Interf. Sci.
, Vol.
1
, pp.
111
239
.
16.
Krupp
H.
,
Schnabel
W.
, and
Walter
G.
,
1972
, “
The Lifshitz-Van der Waals Constant: Computation of the Lifshitz-Van der Waals Constant on the Basis of Optical Data
,”
J. Coll. Interf. Sci.
, Vol.
39
, pp.
421
423
.
17.
Legtenberg, R., Elders, J., and Elwenspoek, M., 1993, “Stiction of Surface Micromachined Structures After Rinsing and Drying: Model and Investigation of Adhesion Mechanisms,” Proc. 7th Int. Conf. Solid-State Sensors and Actuators, Transducers ’93, Yokohama, Japan, June 7-10, 1993, pp. 198–201.
18.
Lin
S. C. H.
, and
Pugacz-Muraszkiewicz
I.
,
1972
, “
Local Stress Measurement in Thin Thermal SiO2 Films on Si Substrates
,”
J. Appl. Phys.
, Vol.
43
, pp.
119
125
.
19.
Majumdar
A.
, and
Bhushan
B.
,
1990
, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
112
, pp.
205
216
.
20.
Majumdar
A.
, and
Bhushan
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
113
, pp.
1
11
.
21.
Majumdar
A.
, and
Tien
C. I.
,
1990
, “
Fractal Characterization and Simulation of Rough Surfaces
,”
Wear
, Vol.
136
, pp.
313
327
.
22.
Mandelbrot
B.
,
1967
, “
How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension
,”
Science
, Vol.
156
, pp.
636
638
.
23.
Mandelbrot, B., 1983, The Fractal Geometry of Nature, Freeman, New York, NY, pp. 1–83 and 116–118.
24.
Materials Handbook for Hybrid Microelectronics, 1988, King, J. A., ed., Artech House, Inc., Boston, MA, pp. 503 and 510–511.
25.
Metals Handbook, 1990, 10th edition. Vol. 2, ASM International, Metals Park, OH, p. 708.
26.
Nayak
P. R.
,
1973
, “
Random Process Model of Rough Surfaces in Plastic Contact
,”
Wear
, Vol.
26
, pp.
305
333
.
27.
Orr
F. M.
,
Scriven
L. E.
, and
Rivas
A. P.
,
1975
, “
Pendular Rings Between Solids: Meniscus Properties and Capillary Force
,”
Journal of Fluid Mechanics
, Vol.
67
, pp.
723
742
.
28.
Scheeper
P. R.
,
Voorthuyzen
J. A.
,
Olthuis
W.
, and
Bergveld
P.
,
1992
, “
Investigation of Attractive Forces Between PECVD Silicon Nitride Microstructures and an Oxidized Silicon Substrate
,”
Sensors and Actuators A
, Vol.
30
, pp.
231
239
.
29.
Tai, Y.-C, Fan, L.-S., and Muller, R. S., 1989, “IC-Processed Micro-motors: Design, Technology, and Testing,” Proc. IEEE Micro Electro Mechanical Systems, Salt Lake City, UT, Feb. 20-22, 1989, pp. 1–6.
30.
Tai
Y.-C.
, and
Muller
R. S.
,
1990
, “
Frictional Study of IC-processed Micromotors
,”
Sensors and Actuators A
, Vol.
21–23
, pp.
180
183
.
31.
Tang
W. C.
,
Nguyen
T. C. H.
, and
Howe
R. T.
,
1989
, “
Laterally Driven Polysilicon Resonant Microstructures
,”
Sensors and Actuators A
, Vol.
20
, pp.
25
32
.
32.
Wan
K.-T.
,
Smith
D. T.
, and
Lawn
B. R.
,
1992
, “
Fracture and Contact Adhesion Energies of Mica-Mica, Silica-Silica, and Mica-Silica Interfaces in Dry and Moist Atmospheres
,”
J. Amer. Ceram. Soc.
, Vol.
75
, pp.
667
676
.
33.
Wang
S.
, and
Komvopoulos
K.
,
1994
a, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part I—Elastic Contact and Heat Transfer Analysis
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
116
, pp.
812
823
.
34.
Wang
S.
, and
Komvopoulos
K.
,
1994
b, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part II—Multiple Domains, Elastoplastic Contacts and Applications
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
116
, pp.
824
832
.
35.
Wang
S.
, and
Komvopoulos
K.
,
1995
, “
A Fractal Theory of die Temperature Distribution at Elastic Contacts of Fast Sliding Surfaces
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
117
, pp.
203
215
.
This content is only available via PDF.
You do not currently have access to this content.