Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Loop heat pipe is a passive two-phase heat transfer device. The key component of the loop heat pipe is the evaporator. In this study, the gas–liquid two-phase behavior inside a two-dimensional porous medium with a single-pore size and multi-pore size distributions was comparatively studied, both experimentally and numerically by the lattice Boltzmann method. With a constant heat flux applied to the evaporator's shell, the wick initially fills with saturated liquid, then undergoes evaporation with vapor invasion, and partially dries out with a gas–liquid interface. Due to the multi-pore size distribution in porous medium, vapor is more easily expelled from the wick. There is a significant difference gas–liquid interface inside the wick between the single-pore size wick and the multi-pore size wick, and the temperature of the evaporator's shell of the multi-pore size wick is 27.6% lower than that of the single-pore size wick. To validate the numerical results, two loop heat pipes were built, including monoporous wick and biporous wick, respectively. The experiment found that under high power, the performance of loop heat pipe with biporous wick is significantly better than that of loop heat pipe with monoporous wick. The temperature of the biporous wick is 9.79 K lower than that of the monoporous wick at 230 W. Experiments and simulations show that the porous medium with multi-pore has better performance.

References

1.
Maydanik
,
Y. F.
,
2005
, “
Loop Heat Pipes
,”
Appl. Therm. Eng.
,
25
(
5
), pp.
635
657
.
2.
Wang
,
G.
,
Mishkinis
,
D.
, and
Nikanpour
,
D.
,
2008
, “
Capillary Heat Loop Technology: Space Applications and Recent Canadian Activities
,”
Appl. Therm. Eng.
,
28
(
4
), pp.
284
303
.
3.
Kaya
,
T.
, and
Hoang
,
T. T.
,
1999
, “
Mathematical Modeling of Loop Heat Pipes and Experimental Validation
,”
J. Thermophys. Heat Transfer
,
13
(
3
), pp.
314
320
.
4.
Zhou
,
G.
,
Li
,
J.
, and
Jia
,
Z.
,
2019
, “
Power-Saving Exploration for High-End Ultra-Slim Laptop Computers With Miniature Loop Heat Pipe Cooling Module
,”
Appl. Energy
,
239
, pp.
859
875
.
5.
Kaya
,
T.
, and
Goldak
,
J.
,
2006
, “
Numerical Analysis of Heat and Mass Transfer in the Capillary Structure of a Loop Heat Pipe
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3211
3220
.
6.
Ren
,
C.
,
Wu
,
Q.-S.
, and
Hu
,
M.-B.
,
2007
, “
Heat Transfer With Flow and Evaporation in Loop Heat Pipe’s Wick at Low or Moderate Heat Fluxes
,”
Int. J. Heat Mass Transfer
,
50
(
11–12
), pp.
2296
2308
.
7.
Reilly
,
S. W.
, and
Catton
,
I.
,
2014
, “
Utilization of Pore-Size Distributions to Predict Thermophysical Properties and Performance of Biporous Wick Evaporators
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
6
), p.
061501
.
8.
Yeh
,
C.-C.
,
Chen
,
C.-N.
, and
Chen
,
Y.-M.
,
2009
, “
Heat Transfer Analysis of a Loop Heat Pipe With Biporous Wicks
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4426
4434
.
9.
Wu
,
S.-C.
,
Wang
,
D.
,
Lin
,
W.-J.
, and
Chen
,
Y.-M.
,
2015
, “
Investigating the Effect of Powder-Mixing Parameter in Biporous Wick Manufacturing on Enhancement of Loop Heat Pipe Performance
,”
Int. J. Heat Mass Transfer
,
89
, pp.
460
467
.
10.
Kumar
,
P.
,
Wangaskar
,
B.
,
Khandekar
,
S.
, and
Balani
,
K.
,
2018
, “
Thermal-Fluidic Transport Characteristics of Bi-Porous Wicks for Potential Loop Heat Pipe Systems
,”
Exp. Therm. Fluid Sci.
,
94
, pp.
355
367
.
11.
Nishikawara
,
M.
,
Nagano
,
H.
,
Mottet
,
L.
, and
Prat
,
M.
,
2015
, “
Formation of Unsaturated Regions in the Porous Wick of a Capillary Evaporator
,”
Int. J. Heat Mass Transfer
,
89
, pp.
588
595
.
12.
Mottet
,
L.
, and
Prat
,
M.
,
2016
, “
Numerical Simulation of Heat and Mass Transfer in Bidispersed Capillary Structures: Application to the Evaporator of a Loop Heat Pipe
,”
Appl. Therm. Eng.
,
102
, pp.
770
784
.
13.
Li
,
J.
,
Hong
,
F.
,
Xie
,
R.
, and
Cheng
,
P.
,
2019
, “
Pore Scale Simulation of Evaporation in a Porous Wick of a Loop Heat Pipe Flat Evaporator Using Lattice Boltzmann Method
,”
Int. Commun. Heat Mass Transfer
,
102
, pp.
22
33
.
14.
Li
,
J.
,
Zheng
,
W.
, and
Hong
,
F.
,
2021
, “
Three-Dimensional Lattice Boltzmann Investigation on Pore Scale Liquid–Vapor Distribution Patterns and Heat Transfer Performance of a Loop Heat Pipe Heterogeneous Porous Wick Evaporator
,”
Int. Commun. Heat Mass Transfer
,
128
, p.
105639
.
15.
Gong
,
S.
, and
Cheng
,
P.
,
2012
, “
A Lattice Boltzmann Method for Simulation of Liquid–Vapor Phase-Change Heat Transfer
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4923
4927
.
16.
Gong
,
S.
, and
Cheng
,
P.
,
2017
, “
Direct Numerical Simulations of Pool Boiling Curves Including Heater’s Thermal Responses and the Effect of Vapor Phase’s Thermal Conductivity
,”
Int. Commun. Heat Mass Transfer
,
87
, pp.
61
71
.
17.
Zhang
,
C.
, and
Cheng
,
P.
,
2017
, “
Mesoscale Simulations of Boiling Curves and Boiling Hysteresis Under Constant Wall Temperature and Constant Heat Flux Conditions
,”
Int. J. Heat Mass Transfer
,
110
, pp.
319
329
.
18.
Wang
,
M.
,
Wang
,
J.
,
Pan
,
N.
, and
Chen
,
S.
,
2007
, “
Mesoscopic Predictions of the Effective Thermal Conductivity for Microscale Random Porous Media
,”
Phys. Rev. E
,
75
(
3
), p.
036702
.
19.
Lou
,
Q.
,
Guo
,
Z.
, and
Shi
,
B.
,
2013
, “
Evaluation of Outflow Boundary Conditions for Two-Phase Lattice Boltzmann Equation
,”
Phys. Rev. E
,
87
(
6
), p.
063301
.
20.
Zou
,
Q.
, and
He
,
X.
,
1997
, “
On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model
,”
Phys. Fluids
,
9
(
6
), pp.
1591
1598
.
21.
Ziegler
,
D. P.
,
1993
, “
Boundary Conditions for Lattice Boltzmann Simulations
,”
J. Stat. Phys.
,
71
(
5–6
), pp.
1171
1177
.
22.
Li
,
L.
,
Chen
,
C.
,
Mei
,
R.
, and
Klausner
,
J. F.
,
2014
, “
Conjugate Heat and Mass Transfer in the Lattice Boltzmann Equation Method
,”
Phys. Rev. E
,
89
(
4
), p.
043308
.
23.
Mottet
,
L.
,
Coquard
,
T.
, and
Prat
,
M.
,
2015
, “
Three Dimensional Liquid and Vapour Distribution in the Wick of Capillary Evaporators
,”
Int. J. Heat Mass Transfer
,
83
, pp.
636
651
.
24.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.