This paper proposed radiative characteristics' expressions for media containing randomly oriented fibers in space. In deriving these simple radiative characteristics' expressions, the fibrous medium effective extinction coefficient is defined to match with the one of large particle obtained by combining geometric optics and Fraunhofer diffraction theory. Fibrous media radiative characteristics are then derived as an average over all incident radiation angles of single fiber radiative characteristics. Theoretical hemispherical reflectance and normal transmittance predictions using the proposed fibrous media radiative characteristics based on the Mie theory agreed well with literature experiments. Therefore, media containing fiber randomly oriented in space can be scaled to a suitable equivalent media such that scattering mechanisms behave similarly to that occurring in a participating media containing spherical particles. Numerical investigations show that a theoretical model which assumes Henyey–Greenstein (HG) scattering phase function can conveniently be used for the estimation of equivalent fibrous media radiative characteristics using hemispherical reflectance measurements. On the other hand, the estimated equivalent fibrous media radiative characteristics from hemispherical measurements and using a two-flux model with isotropic scaling radiative characteristics may be subjected to serious errors in the case of semitransparent media for which the absorption is significant.
Skip Nav Destination
Article navigation
June 2017
Research-Article
Radiative Characteristics of High-Porosity Media Containing Randomly Oriented Fibers in Space
Herve Thierry Tagne Kamdem
Herve Thierry Tagne Kamdem
Laboratory of Mechanics and Modeling
of Physical Systems,
Department of Physics,
Faculty of Science,
University of Dschang,
P. O. Box 67,
Dschang, Cameroon
e-mail: herve.kamdem@univ-dschang.org; ttagne@gmail.com
of Physical Systems,
Department of Physics,
Faculty of Science,
University of Dschang,
P. O. Box 67,
Dschang, Cameroon
e-mail: herve.kamdem@univ-dschang.org; ttagne@gmail.com
Search for other works by this author on:
Herve Thierry Tagne Kamdem
Laboratory of Mechanics and Modeling
of Physical Systems,
Department of Physics,
Faculty of Science,
University of Dschang,
P. O. Box 67,
Dschang, Cameroon
e-mail: herve.kamdem@univ-dschang.org; ttagne@gmail.com
of Physical Systems,
Department of Physics,
Faculty of Science,
University of Dschang,
P. O. Box 67,
Dschang, Cameroon
e-mail: herve.kamdem@univ-dschang.org; ttagne@gmail.com
Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS. Manuscript received April 22, 2016; final manuscript received January 21, 2017; published online March 7, 2017. Assoc. Editor: Dr. Sandra Boetcher.
J. Thermal Sci. Eng. Appl. Jun 2017, 9(2): 021014 (9 pages)
Published Online: March 7, 2017
Article history
Received:
April 22, 2016
Revised:
January 21, 2017
Citation
Kamdem, H. T. T. (March 7, 2017). "Radiative Characteristics of High-Porosity Media Containing Randomly Oriented Fibers in Space." ASME. J. Thermal Sci. Eng. Appl. June 2017; 9(2): 021014. https://doi.org/10.1115/1.4035839
Download citation file:
Get Email Alerts
Cited By
Numerical Analysis of Enhanced Forced Convection in Perforated Surface Wavy Plate-Fin Core
J. Thermal Sci. Eng. Appl
Related Articles
New Radiative Analysis Approach for Reticulated Porous Ceramics Using Discrete Ordinates Method
J. Heat Transfer (November,1996)
Determination of Scattering and Absorption Coefficients of Porous Silica Aerogel Composites
J. Heat Transfer (March,2016)
Absorption/Scattering Coefficients and Scattering Phase Functions in Reticulated Porous Ceramics
J. Heat Transfer (February,1996)
Tomography-Based Heat and Mass Transfer Characterization of Reticulate Porous Ceramics for High-Temperature Processing
J. Heat Transfer (February,2010)
Related Proceedings Papers
Related Chapters
Short-Pulse Collimated Radiation in a Participating Medium Bounded by Diffusely Reflecting Boundaries
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
The MCRT Method for Participating Media
The Monte Carlo Ray-Trace Method in Radiation Heat Transfer and Applied Optics
Scattering of Out-Plane Line Source Load by a Shallow-Embedded Circular Lining Structure and the Ground Motion
Geological Engineering: Proceedings of the 1 st International Conference (ICGE 2007)