This paper proposed radiative characteristics' expressions for media containing randomly oriented fibers in space. In deriving these simple radiative characteristics' expressions, the fibrous medium effective extinction coefficient is defined to match with the one of large particle obtained by combining geometric optics and Fraunhofer diffraction theory. Fibrous media radiative characteristics are then derived as an average over all incident radiation angles of single fiber radiative characteristics. Theoretical hemispherical reflectance and normal transmittance predictions using the proposed fibrous media radiative characteristics based on the Mie theory agreed well with literature experiments. Therefore, media containing fiber randomly oriented in space can be scaled to a suitable equivalent media such that scattering mechanisms behave similarly to that occurring in a participating media containing spherical particles. Numerical investigations show that a theoretical model which assumes Henyey–Greenstein (HG) scattering phase function can conveniently be used for the estimation of equivalent fibrous media radiative characteristics using hemispherical reflectance measurements. On the other hand, the estimated equivalent fibrous media radiative characteristics from hemispherical measurements and using a two-flux model with isotropic scaling radiative characteristics may be subjected to serious errors in the case of semitransparent media for which the absorption is significant.

References

1.
Dombrovsky
,
L. A.
, and
Baillis
,
D.
,
2010
,
Thermal Radiation in Disperse Systems: An Engineering Approach
,
Begell House
,
Redding, CT
.
2.
Sacadura
,
J.-F.
,
2011
, “
Thermal Radiative Properties of Complex Media: Theoretical Prediction Versus Experimental Identification
,”
Heat Transfer Eng.
,
32
(
9
), pp.
754
770
.
3.
Lumley
,
N. P. G.
,
Ford
,
E.
,
Minford
,
E.
, and
Porter
,
J. M.
,
2015
, “
A Simplified Model for Effective Thermal Conductivity of Highly Porous Ceramic Fiber Insulation
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
4
), p.
041022
.
4.
Viskanta
,
R.
, and
Menguc
,
M. P.
,
1989
, “
Radiative Transfer in Dispersed Media
,”
ASME Appl. Mech. Rev.
,
42
(
9
), pp.
241
259
.
5.
Baillis
,
D.
, and
Sacadura
,
J.-F.
,
2000
, “
Thermal Radiation Properties of Dispersed Media: Theoretical Prediction and Experimental Characterization
,”
J. Quant. Spectrosc. Radiat. Transfer
,
67
(
5
), pp.
327
363
.
6.
Randrianalisoa
,
J.
,
Baillis
,
D.
, and
Pilon
,
L.
,
2006
, “
Improved Inverse Method for Radiative Characteristics of Closed-Cell Absorbing Porous Media
,”
AIAA J. Thermophys. Heat Transfer
,
20
(
4
), pp.
871
883
.
7.
Zhang
,
C.
, and
Kribus
,
A.
,
2002
, “
Effective Radiative Properties of a Cylinder Array
,”
ASME J. Heat Transfer
,
124
(
1
), pp.
198
200
.
8.
Zhao
,
J.-J.
,
Duan
,
Y.-Y.
,
Wang
,
X.-D.
, and
Wang
,
B.-X.
,
2012
, “
Radiative Properties and Heat Transfer Characteristics of Fiber-Loaded Silica Aerogel Composites for Thermal Insulation
,”
Int. J. Heat Mass Transfer
,
55
(19–20), pp.
5196
5204
.
9.
Nicolau
,
V. P.
,
Raynaud
,
M.
, and
Sacadura
,
J. F.
,
1994
, “
Spectral Radiative Properties Identification of Fiber Insulating Materials
,”
Int. J. Heat Mass Transfer
,
37
(
1
), pp.
311
324
.
10.
Nisipeanu
,
E.
, and
Jones
,
P. D.
,
2003
, “
Monte Carlo Simulation of Radiative Heat Transfer in Coarse Fibrous Media
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
748
752
.
11.
Tahira
,
M. A.
,
Tafreshi
,
H. V.
,
Hosseini
,
S. A.
, and
Pourdeyhimi
,
B.
,
2010
, “
Modeling the Role of Microstructural Parameters in Radiative Heat Transfer Through Disordered Fibrous Media
,”
Int. J. Heat Mass Transfer
,
53
(21–22), pp.
4629
4637
.
12.
Arambakam
,
R.
,
Tafreshi
,
H. V.
, and
Pourdeyhimi
,
B.
,
2012
, “
Analytical Monte Carlo Ray Tracing Simulation of Radiative Heat Transfer Through Bimodal Fibrous Insulations With Translucent Fibers
,”
Int. J. Heat Mass Transfer
,
55
(23–24), pp.
7234
7246
.
13.
Tong
,
T. W.
, and
Tien
,
C. L.
,
1980
, “
Analytical Models for Thermal Radiation in Fibrous Insulations
,”
J. Therm. Insul.
,
4
, pp.
27
44
.
14.
Houston
,
R. L.
, and
Korpela
,
S. A.
,
1982
, “
Heat Transfer Through Fiberglass Insulation
,”
7th International Heat Transfer Conference
, Munchen, Germany, Sept. 6–10, Vol.
2
, pp.
499
504
.
15.
Lee
,
S. C.
,
1986
, “
Radiative Transfer Through a Fibrous Medium: Allowance for Fiber Orientation
,”
J. Quant. Spectrosc. Radiat. Transfer
,
36
(
3
), pp.
253
263
.
16.
Coquard
,
R.
, and
Baillis
,
D.
,
2006
, “
Radiative Properties of Dense Fibrous Medium Containing Fibers in the Geometric Limit
,”
ASME J. Heat Transfer
,
128
(
10
), pp.
1022
1030
.
17.
Daryabeigi
,
K.
,
Cunnington
,
G. R.
,
Miller
,
S. D.
, and
Knutson
,
J. R.
,
2010
, “
Combined Heat Transfer in High-Porosity High Temperature Fibrous Insulations: Theory and Experimental Validation
,”
AIAA
Paper No. 2010-4660.
18.
Tong
,
T. W.
,
Yang
,
Q. S.
, and
Tien
,
C. L.
,
1983
, “
Radiative Heat Transfer in Fibrous Insulations—Part II: Experimental Study
,”
ASME J. Heat Transfer
,
105
(
1
), pp.
76
81
.
19.
Wang
,
K. Y.
, and
Tien
,
C. L.
,
1983
, “
Radiative Transfer Through Opacified Fibers and Powders
,”
J. Quant. Spectrosc. Radiat. Transfer
,
30
(
3
), pp.
213
223
.
20.
Guilbert
,
G.
,
Jeandel
,
G.
,
Morlot
,
G.
,
Langlais
,
C.
, and
Klarsfeld
,
S.
,
1987
, “
Optical Characteristics of Semi-Transparent Porous Media
,”
High Temp. High Pressures
,
19
(3), pp.
251
259
.
21.
Tong
,
T. W.
,
Swathi
,
P. S.
, and
Cunnington
,
G. R.
, Jr
.,
1989
, “
Reduction of Radiative Heat Transfer in Thermal Insulations by Use of Dielectric Coated Fibers
,”
Int. Commun. Heat Mass Transfer
,
16
(
6
), pp.
851
860
.
22.
Wan
,
X.
, and
Fan
,
J.
,
2012
, “
Heat Transfer Through Fibrous Assemblies Incorporating Reflective Interlayers
,”
Int. J. Heat Mass Transfer
,
55
(25–26), pp.
8032
8037
.
23.
Tong
,
T. W.
, and
Tien
,
C. L.
,
1983
, “
Radiative Heat Transfer in Fibrous Insulations—Part I: Analytical Study
,”
ASME J. Heat Transfer
,
105
(
1
), pp.
70
75
.
24.
Lee
,
S. C.
, and
Cunnington
,
G. R.
,
2000
, “
Conduction and Radiation Heat Transfer in High-Porosity Fiber Thermal Insulation
,”
AIAA J. Thermophys. Heat Transfer
,
14
(
2
), pp.
121
136
.
25.
Cunnington
,
G. R.
, and
Lee
,
S. C.
,
1996
, “
Radiative Properties of Fibrous Insulations: Theory Versus Experiment
,”
AIAA J. Thermophys. Heat Transfer
,
10
(
3
), pp.
460
466
.
26.
Cunnington
,
G. R.
, and
Lee
,
S. C.
,
1997
, “
Experimental Verification of a Theory for Radiative Properties of High-Porosity Fibrous Media
,”
Experimental Heat Transfer, Fluid Mechanics and Thermodynamics
, Vol. 4, M. Giot, F. Mayinger, and G. P. Celata, eds., Edizioni ETS, Pisa, Italy, pp.
2035
2041
.
27.
Marschall
,
J.
, and
Milos
,
S. F.
,
1997
, “
The Calculation of Anisotropic Extinction Coefficients for Radiation Diffusion in Rigid Fibrous Ceramic Insulations
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
627
634
.
28.
Yuen
,
W. W.
, and
Cunnington
,
G.
,
2007
, “
Radiative Heat Transfer Analysis of Fibrous Insulation Materials Using the Zonal-GEF Method
,”
AIAA J. Thermophys. Heat Transfer
,
21
(
1
), pp.
105
113
.
29.
Zhao
,
S.-Y.
,
Zhang
,
B.-M.
, and
Du
,
S.-Y.
,
2009
, “
An Inverse Analysis to Determine Conductive and Radiative Properties of a Fibrous Medium
,”
J. Quant. Spectrosc. Radiat. Transfer
,
110
(
13
), pp.
1111
1123
.
30.
Yamada
,
J.
, and
Kurosaki
,
Y.
,
2000
, “
Radiative Characteristics of Fibers With a Large Size Parameter
,”
Int. J. Heat Mass Transfer
,
43
(
6
), pp.
981
991
.
31.
Lind
,
A. C.
, and
Greenberg
,
J. M.
,
1966
, “
Electromagnetic Scattering by Obliquely Cylinders
,”
J. Appl. Phys.
,
37
(
8
), pp.
3195
3303
.
32.
Kerker
,
M.
,
1969
,
The Scattering of Light and Other Electromagnetic Radiation
,
Academic Press
,
New York
.
33.
Bohren
,
C. F.
, and
Huffman
,
D. R.
,
1983
,
Absorption and Scattering of Light by Small Particles
,
Wiley
,
New York
.
34.
Cohen
,
A.
, and
Alpert
,
P.
,
1979
, “
Extinction Efficiency of Obliquely and Randomly Oriented Infinite Cylinders
,”
J. Appl. Phys.
,
50
(
12
), pp.
8262
8264
.
35.
Kokhanovsky
,
A. A.
,
2008
,
Aerosol Optics: Light Absorption and Scattering by Particles in the Atmosphere
,
Praxis Publishing
,
Chichester, UK
.
36.
Jeandel
,
G.
,
Boulet
,
P.
, and
Morlot
,
G.
,
1993
, “
Radiative Transfer Through a Medium of Silica Fibres Oriented in Parallel Planes
,”
Int. J. Heat Mass Transfer
,
36
(
2
), pp.
531
536
.
37.
Modest
,
F. M.
,
2013
,
Radiative Heat Transfer
, 3rd ed.,
McGraw-Hill
,
New York
.
38.
Howell
,
J. R.
,
Siegel
,
R.
, and
Mengüç
,
M. P.
,
2011
,
Thermal Radiation Heat Transfer
, 5th ed.,
CRC Press
,
Boca Raton, FL
.
39.
Matthews
,
L. K.
,
Viskanta
,
R.
, and
Incropera
,
F. P.
,
1984
, “
Development of Inverse Methods for Determining Thermophysical and Radiative Properties of High-Temperature Fibrous Materials
,”
Int. J. Heat Mass Transfer
,
27
(
4
), pp.
487
495
.
40.
Lee
,
H.
, and
Buckius
,
R. O.
,
1982
, “
Scaling Anisotropic Scattering in Radiation Heat Transfer for a Planar Medium
,”
ASME J. Heat Transfer
,
104
(
1
), pp.
68
75
.
41.
Dombrovsky
,
L. A.
,
2012
, “
The Use of Transport Approximation and Diffusion-Based Models in Radiative Transfer Calculations
,”
Comput. Therm. Sci.
,
4
(
4
), pp.
297
315
.
42.
Dombrovskii
,
L. A.
,
1994
, “
Quartz-Fiber Thermal Insulation: Calculation of Spectral Radiation Characteristics in the Infrared Region
,”
High Temp.
,
32
(
2
), pp.
197
203
.
43.
Palik
,
E. D.
,
1998
,
Handbook of Optical Constant of Solids
,
Academic Press
, San Diego, CA.
44.
Kitamura
,
R.
,
Pilon
,
L.
, and
Jonasz
,
M.
,
2007
, “
Optical Constants of Silica Glass From Extreme Ultraviolet to Far Infrared at Near Room Temperature
,”
Appl. Opt.
,
46
(
33
), pp.
8118
8133
.
45.
Singh
,
B. P.
, and
Kaviany
,
M.
,
1991
, “
Independent Theory Versus Direct Simulation of Radiation Heat Transfer in Packed Beds
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2869
2882
.
You do not currently have access to this content.