Although an annular stepped fin can produce better cooling effect in comparison to an annular disk fin, it is yet to be studied in detail. In the present work, one-dimensional heat transfer in a two-stepped rectangular cross-sectional annular fin with constant base temperature and variable thermal conductivity is modeled as a multi-objective optimization problem. Taking cross-sectional half-thicknesses and outer radii of the two fin steps as design variables, an attempt is made to obtain the efficient fin geometry primarily by simultaneously maximizing the heat transfer rate and minimizing the fin volume. For further assessment of the fin performance, three more objective functions are studied, which are minimization of the fin surface area and maximization of the fin efficiency and effectiveness. Evaluating the heat transfer rate through the hybrid spline difference method, the well-known multi-objective genetic algorithm, namely, nondominated sorting genetic algorithm II (NSGA-II), is employed for approximating the Pareto-optimal front containing a set of tradeoff solutions in terms of different combinations of the considered five objective functions. The Pareto-optimal sensitivity is also analyzed for studying the influences of the design variables on the objective functions. As an outcome, it can be concluded that the proposed procedure would give an open choice to designers to lead to a practical stepped fin configuration.

References

1.
Kundu
,
B.
,
Lee
,
K.-S.
, and
Campo
,
A.
,
2015
, “
An Ease of Analysis for Optimum Design of an Annular Step Fin
,”
Int. J. Heat Mass Transfer
,
85
, pp.
221
227
.
2.
Kundu
,
B.
, and
Das
,
P.
,
2001
, “
Performance Analysis and Optimization of Annular Fin With a Step Change in Thickness
,”
ASME J. Heat Transfer
,
123
(
3
), pp.
601
604
.
3.
Kraus
,
A. D.
,
Aziz
,
A.
, and
Welty
,
J.
,
2001
,
Extended Surface Heat Transfer
,
Wiley
,
New York
.
4.
Kundu
,
B.
, and
Das
,
P.
,
1999
, “
Performance Analysis of Eccentric Annular Fins With a Variable Base Temperature
,”
Numer. Heat Transfer, Part A: Applications
,
36
(
7
), pp.
751
766
.
5.
Look
,
D. C.
, Jr.
,
1999
, “
Fin (on a Pipe) Effectiveness: One Dimensional and Two Dimensional
,”
ASME J. Heat Transfer
,
121
(
1
), pp.
227
230
.
6.
Lalot
,
S.
,
Tournier
,
C.
, and
Jensen
,
M.
,
1999
, “
Fin Efficiency of Annular Fins Made of Two Materials
,”
Int. J. Heat Mass Transfer
,
42
(
18
), pp.
3461
3467
.
7.
Ganji
,
D. D.
,
Ganji
,
Z. Z.
, and
Ganji
,
H. D.
,
2011
, “
Determination of Temperature Distribution for Annular Fins With Temperature Dependent Thermal Conductivity by HPM
,”
Therm. Sci.
,
15
(
Suppl. 1
), pp.
S111
S115
.
8.
Malekzadeh
,
P.
, and
Rahideh
,
H.
,
2007
, “
IDQ Two-Dimensional Nonlinear Transient Heat Transfer Analysis of Variable Section Annular Fins
,”
Energy Convers. Manage.
,
48
(
1
), pp.
269
276
.
9.
Lee
,
H.-L.
,
Chang
,
W.-J.
,
Wu
,
S.-C.
, and
Yang
,
Y.-C.
,
2013
, “
An Inverse Problem in Estimating the Base Heat Flux of an Annular Fin Based on the Hyperbolic Model of Heat Conduction
,”
Int. Commun. Heat Mass Transfer
,
44
, pp.
31
37
.
10.
Naphon
,
P.
,
2006
, “
Study on the Heat Transfer Characteristics of the Annular Fin Under Dry-Surface, Partially Wet-Surface, and Fully Wet-Surface Conditions
,”
Int. Commun. Heat Mass Transfer
,
33
(
1
), pp.
112
121
.
11.
Brown
,
A.
,
1965
, “
Optimum Dimensions of Uniform Annular Fins
,”
Int. J. Heat Mass Transfer
,
8
(
4
), pp.
655
662
.
12.
Ullmann
,
A.
, and
Kalman
,
H.
,
1989
, “
Efficiency and Optimized Dimensions of Annular Fins of Different Cross-Section Shapes
,”
Int. J. Heat Mass Transfer
,
32
(
6
), pp.
1105
1110
.
13.
Arslanturk
,
C.
,
2004
, “
Performance Analysis and Optimization of a Thermally Non-Symmetric Annular Fin
,”
Int. Commun. Heat Mass Transfer
,
31
(
8
), pp.
1143
1153
.
14.
Yu
,
L.-T.
, and
Chen
,
C.-K.
,
1999
, “
Optimization of Circular Fins With Variable Thermal Parameters
,”
J. Franklin Inst.
,
336
(
1
), pp.
77
95
.
15.
Kang
,
H. S.
, and
Look
,
D. C.
, Jr.
,
2007
, “
Optimization of a Thermally Asymmetric Convective and Radiating Annular Fin
,”
Heat Transfer Eng.
,
28
(
4
), pp.
310
320
.
16.
Kundu
,
B.
, and
Das
,
P.
,
2007
, “
Performance Analysis and Optimization of Elliptic Fins Circumscribing a Circular Tube
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
173
180
.
17.
Malekzadeh
,
P.
,
Rahideh
,
H.
, and
Setoodeh
,
A.
,
2007
, “
Optimization of Non-Symmetric Convective–Radiative Annular Fins by Differential Quadrature Method
,”
Energy Convers. Manage.
,
48
(
5
), pp.
1671
1677
.
18.
Sharqawy
,
M. H.
, and
Zubair
,
S. M.
,
2007
, “
Efficiency and Optimization of an Annular Fin With Combined Heat and Mass Transfer—An Analytical Solution
,”
Int. J. Refrig.
,
30
(
5
), pp.
751
757
.
19.
Kundu
,
B.
, and
Barman
,
D.
,
2011
, “
An Analytical Prediction for Performance and Optimization of an Annular Fin Assembly of Trapezoidal Profile Under Dehumidifying Conditions
,”
Energy
,
36
(
5
), pp.
2572
2588
.
20.
Kang
,
H.-S.
,
2009
, “
Optimization of a Rectangular Profile Annular Fin Based on Fixed Fin Height
,”
J. Mech. Sci. Technol.
,
23
(
11
), pp.
3124
3131
.
21.
Kundu
,
B.
, and
Das
,
P.
,
1999
, “
Performance Analysis and Optimization of Eccentric Annular Disk Fins
,”
ASME J. Heat Transfer
,
121
(
1
), pp.
128
135
.
22.
Laor
,
K.
, and
Kalman
,
H.
,
1996
, “
Performance and Optimum Dimensions of Different Cooling Fins With a Temperature-Dependent Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
39
(
9
), pp.
1993
2003
.
23.
Kang
,
H. S.
, and
Look
,
D. C.
,
2004
, “
Thermally Asymmetric Annular Rectangular Fin Optimization
,”
J. Thermophys. Heat Transfer
,
18
(
3
), pp.
406
409
.
24.
Kang
,
H. S.
, and
Look
,
D. C.
, Jr.
,
2009
, “
Optimization of a Trapezoidal Profile Annular Fin
,”
Heat Transfer Eng.
,
30
(
5
), pp.
359
367
.
25.
Nemati
,
H.
, and
Samivand
,
S.
,
2015
, “
Performance Optimization of Annular Elliptical Fin Based on Thermo-Geometric Parameters
,”
Alexandria Eng. J.
,
54
(
4
), pp.
1037
1042
.
26.
Nagarani
,
N.
,
Mayilsamy
,
K.
, and
Murugesan
,
A.
,
2012
, “
Fin Effectiveness Optimization of Elliptical Annular Fins by Genetic Algorithm
,”
Procedia Eng.
,
38
, pp.
2939
2948
.
27.
Pashah
,
S.
,
Moinuddin
,
A.
, and
Zubair
,
S. M.
,
2016
, “
Thermal Performance and Optimization of Hyperbolic Annular Fins Under Dehumidifying Operating Conditions—Analytical and Numerical Solutions
,”
Int. J. Refrig.
,
65
, pp.
42
54
.
28.
Kundu
,
B.
,
2009
, “
Analysis of Thermal Performance and Optimization of Concentric Circular Fins Under Dehumidifying Conditions
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2646
2659
.
29.
Kundu
,
B.
, and
Lee
,
K.-S.
,
2014
, “
Analytical Tools for Calculating the Maximum Heat Transfer of Annular Stepped Fins With Internal Heat Generation and Radiation Effects
,”
Energy
,
76
, pp.
733
748
.
30.
Wang
,
C.-C.
,
Liao
,
W.-J.
, and
Yang
,
C.-Y.
,
2013
, “
Hybrid Spline Difference Method for Heat Transfer and Thermal Stresses in Annular Fins
,”
Numer. Heat Transfer, Part B
,
64
(
1
), pp.
71
88
.
31.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II
,”
IEEE Transfer Evol. Comput.
,
6
(
2
), pp.
182
197
.
32.
Wang
,
C.-C.
,
Huang
,
C.-H.
, and
Yang
,
D.-J.
,
2011
, “
Hybrid Spline Difference Method for Steady-State Heat Conduction
,”
Numer. Heat Transfer, Part B
,
60
(
6
), pp.
472
485
.
33.
Wang
,
C.-C.
,
Chao
,
L.-P.
, and
Liao
,
W.-J.
,
2012
, “
Hybrid Spline Difference Method (HSDM) for Transient Heat Conduction
,”
Numer. Heat Transfer, Part B
,
61
(
2
), pp.
129
146
.
34.
Wang
,
C.-C.
,
Liao
,
W.-J.
, and
Hsu
,
Y.-S.
,
2012
, “
Hybrid Spline Difference Method for the Burgers' Equation
,”
Appl. Math. Comput.
,
219
(
3
), pp.
1031
1039
.
35.
Martin
,
A.
, and
Boyd
,
I. D.
,
2010
, “
Variant of the Thomas Algorithm for Opposite-Bordered Tridiagonal Systems of Equations
,”
Int. J. Numer. Method Biomed. Eng.
,
26
(
6
), pp.
752
759
.
36.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
Chichester, UK
.
You do not currently have access to this content.