Abstract

In this study, the critical operation parameters related to the heating, ventilation, and air conditioning (HVAC) system of a campus library are numerically optimized. The objective of this study is to improve the standards related to thermal comfort and indoor air quality (IAQ) of the campus library. As a result, the library's energy consumption is significantly reduced with this new HVAC system design. The computational fluid dynamics software ansys fluent and experimental measurement are used to verify the effects of changes in velocity, temperature, and relative humidity (RH) of the air supply system (three operating parameters) on the ventilation efficiency. The ventilation efficiency is also assessed by parameters such as AC power consumption, the predicted mean vote (PMV) for thermal comfort, and CO2 concentration for IAQ (three-target performances). A response surface was developed numerically using ansys designxplorer to analyze the relationship between those three operating parameters and the three mentioned target performance characteristics. The optimization results show that the target performance of CO2 concentration should be <1000 ppm; in addition, the PMV should be in the range of −0.5 < PMV < 0.5. The results show that if air supply velocity, temperature, and RH are set to 1.0 m/s, 23 °C, and 40%, respectively, then the library electricity consumption (and cost) can be significantly reduced by up to 22.3%.

References

1.
Kibert
,
C. J.
,
2022
,
Sustainable Construction: Green Building Design and Delivery
, 5th ed.,
John Wiley & Sons, Inc
,
Hoboken, NJ
.
2.
Means
,
R. S.
,
2011
,
Green Building: Project Planning & Cost Estimating
, 3rd ed.,
John Wiley & Sons, Inc
,
Hoboken, NJ
.
3.
Jaysawal
,
R. K.
,
Chakraborty
,
S.
,
Elangovan
,
D.
, and
Padmanaban
,
S.
,
2022
, “
Concept of Net Zero Energy Buildings (NZEB)—A Literature Review
,”
Clean. Eng. Technol.
,
11
(
1
), p.
100582
.
4.
Pless
,
S.
, and
Torcellini
,
P.
,
2010
,
Net-Zero Energy Buildings: A Classification System Based on Renewable Energy Supply Options
. Technical Report No. NREL/TP-550-44586,
National Renewable Energy Laboratory (NREL)
,
Taiwan
.
5.
Katili
,
A.
,
Boukhanouf
,
R.
, and
Wilson
,
R.
, “
Space Cooling in Buildings in Hot and Humid Climates–A Review of the Effect of Humidity on the Applicability of Existing Cooling Techniques
,”
14th International Conference on Sustainable Energy Technologies—SET 2015
,
Nottingham, UK
,
Aug. 25–27
.
6.
Shi
,
H.
, and
Chen
,
Q.
,
2021
, “
Building Energy Management Decision-Making in the Real World: A Comparative Study of HVAC Cooling Strategies
,”
J. Build. Eng.
,
33
(
1
), p.
101869
.
7.
Liao
,
P.-Y.
,
Lin
,
T.
,
Ali Zargar
,
O.
,
Hsu
,
C.-J.
,
Chou
,
C.-H.
,
Shih
,
Y.-C.
,
Hu
,
S.-C.
, and
Leggett
,
G.
,
2024
, “
Energy Consumption and Carbon Emission Reduction in HVAC System of a Dynamic Random Access Memory (DRAM) Semiconductor Fabrication Plant (Fab)
,”
IEEE Trans. Semicond. Manuf.
,
37
(
2
), pp.
174
184
.
8.
Spengler
,
J. D.
,
Samet
,
J. M.
, and
McCarthy
,
J. F.
,
2001
,
Indoor Air Quality Handbook
,
McGraw-Hill Education
,
New York
.
9.
2004
,
ASHRAE Handbook—HVAC Systems and Equipment, Thermal Environmental Conditions for Human Occupancy
, ASHRAE Standard 55-2004,
American Society of Heating, Refrigerating and Air-Conditioning Engineers
.
10.
Heidarinejad
,
G.
,
Shokrollahi
,
S.
, and
Pasdarshahri
,
H.
,
2021
, “
An Investigation of Thermal Comfort, IAQ, and Energy Saving in UFAD Systems Using a Combination of Taguchi Optimization Algorithm and CFD
,”
Adv. Build. Energy Res.
,
15
(
6
), pp.
799
817
.
11.
Bai
,
Y.
,
Shen
,
Y.
, and
Wang
,
T.
,
2023
, “
Multi-objective Optimization of Heating Operation of Stratum Ventilation Under Different Clothing Insulations Using Taguchi Method, RSM, and SPA-TOPSIS
,”
Int. J. Therm. Sci.
,
186
(
1
), p.
108124
.
12.
Zhai
,
Z.
, and
Metzger
,
I. D.
,
2012
, “
Taguchi-Method-Based CFD Study and Optimisation of Personalised Ventilation Systems
,”
Indoor Built Environ.
,
21
(
5
), pp.
690
702
.
13.
Homaei
,
S.
, and
Hamdy
,
M.
,
2020
, “
A Robustness-Based Decision Making Approach for Multi-target High Performance Buildings Under Uncertain Scenarios
,”
Appl. Energy
,
267
(
1
), p.
114868
.
14.
Haghshenaskashani
,
S.
,
Sajadi
,
B.
, and
Cehlin
,
M.
,
2018
, “
Multi-objective Optimization of Impinging Jet Ventilation Systems: Taguchi-Based CFD Method
,”
Build Simul.
,
11
(
1
), pp.
1207
1214
.
15.
Yuce
,
B. E.
,
Nielsen
,
P. V.
, and
Wargocki
,
P.
,
2022
, “
The Use of Taguchi, ANOVA, and GRA Methods to Optimize CFD Analyses of Ventilation Performance in Buildings
,”
Build. Environ.
,
225
(
1
), p.
109587
.
16.
Abdullah
,
H. K.
, and
Alibaba
,
H. Z.
,
2022
, “
A Performance-Based Window Design and Evaluation Model for Naturally Ventilated Offices
,”
Buildings
,
12
(
1
), p.
1141
.
17.
Jain
,
S.
,
Dadhich
,
M.
,
Sharma
,
V.
,
Sharma
,
S.
,
Agarwal
,
D.
, and
Gupta
,
R.
,
2015
, “
Numerical Study on Thermal Comfort-A Case Study Using Taguchi Method
,”
IJMECH
,
4
(
2
), pp.
121
136
.
18.
Taguchi
,
G.
,
Elsayed
,
A. E.
, and
Thomas
,
C. H.
,
1989
,
Quality Engineering in Production System
,
McGraw-Hill
,
New York
.
19.
Mori
,
T.
,
1991
,
The New Experimental Design: Taguchi's Approach to Quality Engineering
,
ASI Press
,
Orlando, FL
.
20.
Lin
,
Y. J. P.
, and
Tsai
,
T. Y.
,
2014
, “
An Experimental Study on a Full-Scale Indoor Thermal Environment Using an Under-Floor Air Distribution System
,”
Energy Build.
,
80
(
1
), pp.
321
330
.
21.
Ganesh
,
G. A.
,
Sinha
,
S. L.
,
Verma
,
T. N.
, and
Dewangan
,
S. K.
,
2022
, “
Numerical Simulation for Energy Consumption and Thermal Comfort in a Naturally Ventilated Indoor Environment Under Different Orientations of Inlet Diffuser
,”
Build. Environ.
,
217
(
1
), p.
109071
.
22.
Babich
,
F.
,
Torriani
,
G.
,
Corona
,
J.
, and
Lara-Ibeas
,
I.
,
2023
, “
Comparison of Indoor Air Quality and Thermal Comfort Standards and Variations in Exceedance for School Buildings
,”
J. Build. Eng.
,
71
(
1
), p.
106405
.
23.
Hong
,
T.
,
Chou
,
S. K.
, and
Bong
,
T. Y.
,
2000
, “
Building Simulation: An Overview of Developments and Information Sources
,”
Build. Environ.
,
35
(
4
), pp.
347
361
.
24.
Li
,
Q.
,
Zhang
,
L.
,
Zhang
,
L.
, and
Wu
,
X.
,
2021
, “
Optimizing Energy Efficiency and Thermal Comfort in Building Green Retrofit
,”
J. Energy
,
237
(
1
), p.
121509
.
25.
Kwok
,
H. H. L.
,
Cheng
,
J. C. P.
,
Li
,
A. T. Y.
,
Tong
,
J. C. K.
, and
Lau
,
A. K. H.
,
2022
, “
Impact of Shaft Design to Thermal Comfort and Indoor Air Quality of Floors Using BIM Technology
,”
J. Build. Eng.
,
51
(
1
), p.
104326
.
26.
Harish
,
V. S. K. V.
, and
Kumar
,
A.
,
2018
,
Green Building and Energy Simulation and Modeling
,
Elsevier Science & Technology
,
Amsterdam, The Netherlands
.
27.
Hou
,
F.
,
Ma
,
J.
,
Kwok
,
H. H. L.
, and
Cheng
,
J. C. P.
,
2022
, “
Prediction and Optimization of Thermal Comfort, IAQ and Energy Consumption of Typical Air-Conditioned Rooms Based on a Hybrid Prediction Model
,”
Build. Environ.
,
225
(
1
), p.
109576
.
28.
Ameen
,
A.
,
Cehlin
,
M.
,
Yamasawa
,
H.
,
Kobayashi
,
T.
, and
Karimipanah
,
T.
,
2023
, “
Energy Saving, Indoor Thermal Comfort and Indoor Air Quality Evaluation of an Office Environment Using Corner Impinging Jet Ventilation
,”
DIBE
,
15
(
1
), p.
100179
.
29.
Zargar
,
O. A.
,
Liao
,
Y. A.
,
Hu
,
M. H.
,
Lin
,
T.
,
Shih
,
Y. C.
,
Hu
,
S. C.
, and
Leggett
,
G.
,
2024
, “
Design of an Innovative Flow Isolation Device (FID) as an Air Flow Barrier to Control the Temperature of Large Storage Areas in Cold Room Applications
,”
Int. J. Thermofluids
,
23
(
1
), p.
100778
.
30.
Zargar
,
O. A.
,
Tsao
,
C. W.
,
Lin
,
T.
,
Shih
,
Y. C.
,
Hu
,
S. C.
, and
Leggett
,
G.
,
2024
, “
An Innovative Double-Jet Design as an Air Flow Barrier to Isolate Temperature and Humidity in a Low-Temperature Storage Room
,”
Int. J. Thermofluids
,
22
(
1
), p.
100650
.
31.
de Volo
,
E. P. B.
,
Pulvirenti
,
B.
,
Jahanbin
,
A.
,
Guidorzi
,
P.
, and
Semprini
,
G.
, 2023, “
Numerical Analysis on the Optimisation of Thermal Comfort Levels in an Office Located Inside Historical Buildings
,”
Appl. Sci.
,
13
(
5
), p.
2954
.
32.
User's Guide
,
2019
,
ANSYS FLUENT, R.19.2
,
ANSYS, Inc
.
33.
User's Guide
,
2019
,
DesignXplorer, R.19.2
,
ANSYS, Inc
.
34.
2004
,
ASHRAE Handbook—Ventilation of Health Care Facilities, 2021, ANSI/ASHRAE/ASHE Standard 170
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers
.
35.
Hyun
,
S.
, and
Kleinstreuer
,
C.
,
2001
, “
Numerical Simulation of Mixed Convection Heat and Mass Transfer in a Human Inhalation Test Chamber
,”
Int. J. Heat Mass Transfer
,
44
(
1
), pp.
2247
2260
.
36.
Gupta
,
S. K.
,
Arora
,
B. B.
, and
Arora
,
A.
,
2024
, “
Thermodynamic Performance Assessment of Air Conditioner Combining Evaporative and Passive Cooling
,”
ASME J. Thermal Sci. Eng. Appl.
,
16
(
5
), p.
051003
.
37.
Gurudatt
,
H. M.
,
Narasimham
,
G. S. V. L.
, and
Sadashive Gowda
,
B.
,
2024
, “
Experimental and Numerical Studies on an Automobile Air Conditioning System With the Refrigerants R134a, R1234yf, and R1234ze(E)
,”
ASME J. Thermal Sci. Eng. Appl.
,
16
(
1
), p.
014501
.
38.
2009
, Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer. ASME V&V 20-2009.
39.
Sah
,
S. K.
,
Murugesan
,
K.
, and
Rajasekar
,
E.
,
2024
, “
Experimental Investigation of Energy-Saving Potential of Ground Source Heat Pump During Peak Hour Operations
,”
ASME J. Thermal Sci. Eng. Appl.
,
16
(
2
), p.
021010
.
You do not currently have access to this content.