Abstract

Nanofluids have been used to facilitate the transport of nanoparticles to tumor regions for different purposes, such as drug delivery, promotion of antioxidant effects, and selective absorption of energy from external sources for thermal treatments. The characterization of nanofluids by solving an inverse parameter estimation problem was the main objective of this work. A nanofluid of Fe2O3 nanoparticles dissolved in distilled water was heated by a diode laser, causing natural convection currents during the experiment. The parameter estimation problem was solved within the Bayesian framework of statistics by applying the Metropolis–Hastings algorithm of the Markov Chain Monte Carlo method, thus demanding large computational times associated with stochastic simulations of a natural convection problem. A multivariate linear regression model was then trained with the high-fidelity natural convection model, to speed up calculations during the solution of the inverse problem. It is shown that the multivariate linear regression low-fidelity model can be used as an accurate representation of the temperatures at the heated surface of the nanofluid, thus resulting in estimated parameters with small uncertainties.

References

1.
van der Zee
,
J.
,
2002
, “
Heating the Patient: A Promising Approach?
,”
Ann. Oncol.
,
13
(
8
), pp.
1173
1184
.
2.
Wust
,
P.
,
Hildebrandt
,
B.
,
Sreenivasa
,
G.
,
Rau
,
B.
,
Gellermann
,
J.
,
Riess
,
H.
,
Felix
,
R.
, and
Schlag
,
P. M.
,
2002
, “
Review Hyperthermia in Combined Treatment of Cancer
,”
Lancet Oncol.
,
3
(
8
), pp.
487
497
.
3.
Varon
,
L. A. B.
,
Orlande
,
H. R. B.
, and
Eliçabe
,
G. E.
,
2015
, “
Estimation of State Variables in the Hyperthermia Therapy of Cancer With Heating Imposed by Radiofrequency Electromagnetic Waves
,”
Int. J. Therm. Sci.
,
98
, pp.
228
236
.
4.
Lamien
,
B.
,
Orlande
,
H. R. B.
, and
Eliçabe
,
G. E.
,
2017
, “
Inverse Problem in the Hyperthermia Therapy of Cancer With Laser Heating and Plasmonic Nanoparticles
,”
Inverse Probl. Sci. Eng.
,
25
(
4
), pp.
608
631
.
5.
Singh
,
R.
,
Das
,
K.
, and
Mishra
,
S. C.
,
2014
, “
Laser-Induced Hyperthermia of Nanoshell Mediated Vascularized Tissue—A Numerical Study
,”
J. Therm. Biol.
,
44
, pp.
55
62
.
6.
Sazgarnia
,
A.
,
Naghavi
,
N.
,
Mehdizadeh
,
H.
, and
Shahamat
,
Z.
,
2015
, “
Investigation of Thermal Distribution for Pulsed Laser Radiation in Cancer Treatment With Nanoparticle-Mediated Hyperthermia
,”
J. Therm. Biol.
,
47
, pp.
32
41
.
7.
Niemz
,
M.
,
2007
,
Laser-Tissue Interactions
,
Springer
,
Berlin, Heidelberg
.
8.
Ferreira
,
L. F. S.
,
Bermeo Varon
,
L.
,
Orlande
,
H. R. B.
, and
Lamien
,
B.
,
2023
, “
Design Under Uncertainties of the Thermal Ablation Treatment of Skin Cancer
,”
ASME J. Heat Mass Transfer
,
145
(
3
), p.
031202
.
9.
de los Ríos Cardenas
,
L.
,
Bermeo Varon
,
L. A.
, and
de Albuquerque Pereira
,
W. C.
,
2022
, “
Parameter Estimation in High-Intensity Focused Ultrasound Therapy
,”
Int. J. Numer. Method Biomed. Eng.
,
38
(
5
), p.
e3591
.
10.
Silva
,
R. L. S.
,
Alaeian
,
M.
, and
Orlande
,
H.
,
2024
, “
Design by Stochastic Simulations of the Thermal Ablation Treatment of Tumors With High Intensity Focused Ultrasound
,”
Numer. Heat Transf., Part B: Fundamentals
,
85
(
2
), pp.
105
130
.
11.
Varon
,
L. A. B.
,
Orlande
,
H. R. B.
, and
Eliçabe
,
G. E.
,
2016
, “
Combined Parameter and State Estimation Problem in a Complex Domain: RF Hyperthermia Treatment Using Nanoparticles
,”
J. Phys.: Conf. Ser.
,
745
(
032014
), p.
032014
.
12.
Varon
,
L. A. B.
,
Orlande
,
H. R. B.
, and
Eliçabe
,
G. E.
,
2016
, “
Combined Parameter and State Estimation in the Radiofrequency Hyperthermia Treatment of Cancer
,”
Numer. Heat Transfer, Part A: Appl.
,
70
(
6
), pp.
581
594
.
13.
Giombini
,
A.
,
Giovannini
,
V.
,
Cesare
,
A. D.
,
Pacetti
,
P.
,
Ichinoseki-Sekine
,
N.
,
Shiraishi
,
M.
,
Naito
,
H.
, and
Maffulli
,
N.
,
2007
, “
Hyperthermia Induced by Microwave Diathermy in the Management of Muscle and Tendon Injuries
,”
Br. Med. Bull.
,
83
(
1
), pp.
379
396
.
14.
Cruz
,
C. C. R.
,
da Silva
,
N. P.
,
Castilho
,
A. V.
,
Favre-Nicolin
,
V. A.
,
Cesar
,
C. L.
,
Orlande
,
H. R. B.
, and
Dos Santos
,
D. S.
,
2020
, “
Synthesis, Characterization and Photothermal Analysis of Nanostructured Hydrides of Pd and PdCeO(2)
,”
Sci. Rep.
,
10
(
1
), p.
17561
.
15.
Bermeo Varon
,
L. A.
,
Loiola
,
B. R.
,
da Silva Abreu
,
L. A.
,
Lamien
,
B.
,
da Silva
,
N. P.
,
Orlande
,
H. R. B.
, and
dos Santos
,
D. S.
,
2020
, “Thermal Effect by Applying Laser Heating in Iron Oxide Nanoparticles Dissolved in Distilled Water,”
XV Mediterranean Conference on Medical and Biological Engineering and Computing. IFMBE Proceedings 76
,
J.
Henriques
,
N.
Neves
, and
P.
de Carvalho
, eds.,
Springer
,
Cham
, pp.
1239
1245
.
16.
Lamien
,
B.
,
Orlande
,
H. R. B.
,
Bermeo
,
L. A.
,
Basto
,
R. L. Q.
,
Eliçabe
,
G.
, and
Dos Santos
,
D. S.
,
2018
, “
Estimation of the Temperature Field in Laser-Induced Hyperthermia Experiments With a Phantom
,”
Int. J. Hyperthermia
,
35
(
1
), pp.
279
290
.
17.
Cho
,
S. H.
, and
Krishnan
,
S.
,
2013
,
Cancer Nanotechnology, Principles and Applications in Radiation Oncology
,
CRC Press
,
Boca Raton, FL
.
18.
Wilhelm
,
S.
,
Tavares
,
A. J.
,
Dai
,
Q.
,
Ohta
,
S.
,
Audet
,
J.
,
Dvorak
,
H. F.
, and
Chan
,
W. C. W.
,
2016
, “
Analysis of Nanoparticle Delivery to Tumors
,”
Nat. Rev. Mater.
,
1
(
5
), p.
16014
.
19.
Dai
,
Q.
,
Wilhelm
,
S.
,
Ding
,
D.
,
Syed
,
A. M.
,
Sindhwani
,
S.
,
Zhang
,
Y.
,
Chen
,
Y. Y.
,
MacMillan
,
P.
, and
Chan
,
W. C. W.
,
2018
, “
Quantifying the Ligand-Coated Nanoparticle Delivery to Cancer Cells in Solid Tumors
,”
ACS Nano
,
12
(
8
), pp.
8423
8435
.
20.
Cheng
,
Y.-H.
,
He
,
C.
,
Riviere
,
J. E.
,
Monteiro-Riviere
,
N. A.
, and
Lin
,
Z.
,
2020
, “
Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach
,”
ACS Nano
,
14
(
3
), pp.
3075
3095
.
21.
Thomas
,
O. S.
, and
Weber
,
W.
,
2019
, “
Overcoming Physiological Barriers to Nanoparticle Delivery—Are We There Yet?
,”
Front Bioeng. Biotechnol.
,
7
, p.
415
.
22.
McGoron
,
A.
,
2020
, “
Meta-Analysis of Efficacy of Chemotherapy Delivered by Mesoporous Silica Nanoparticles to Tumor-Bearing Mice
,”
Crit. Rev. Biomed. Eng.
,
48
(
6
), pp.
327
418
.
23.
Nagesetti
,
A.
,
Dulikravich
,
G. S.
,
Orlande
,
H. R. B.
,
Colaco
,
M. J.
, and
McGoron
,
A. J.
,
2021
, “
Computational Model of Silica Nanoparticle Penetration Into Tumor Spheroids: Effects of Methoxy and Carboxy PEG Surface Functionalization and Hyperthermia
,”
Int. J. Numer. Method Biomed. Eng.
,
37
(
8
), p.
e3504
.
24.
da Silva
,
N. P.
,
Varon
,
L. A. B.
,
da Costa
,
J. M. J.
, and
Orlande
,
H. R. B.
,
2021
, “
Monte Carlo Parameter Estimation and Direct Simulation of In Vitro Hyperthermia-Chemotherapy Experiment
,”
Numer. Heat Transfer, Part A: Appl.
,
80
(
5
), pp.
185
209
.
25.
da Silva
,
N. P.
,
Varon
,
L. A. B.
,
Cruz
,
C. C. R.
,
Fonseca
,
H. M.
,
Costa
,
J. M. J.
,
Cesar
,
C. L.
,
Santos
,
D. S. D.
, and
Orlande
,
H. R. B.
,
2024
, “
Inverse Heat Transfer Problem for the Characterization of Nanofluids Produced With Different Types of Palladium Nanoparticles
,”
Int. J. Heat Mass Transf.
,
231
, p.
125821
.
26.
Kaipio
,
J. P.
, and
Somersalo
,
E.
,
2004
,
Computational and Statistical Methods for Inverse Problems
,
Springer
,
Berlin, Heidelberg
.
27.
Kaipio
,
J.
, and
Fox
,
C.
,
2011
, “
The Bayesian Framework for Inverse Problems in Heat Transfer
,”
Heat Transfer Eng.
,
32
(
9
), pp.
718
753
.
28.
Brooks
,
S.
,
Gelman
,
A.
,
Jones
,
G. L.
, and
Meng
,
X.-L.
,
2011
,
Handbook of Markov Chain Monte Carlo
,
Chapman & Hall/CRC
,
New York
.
29.
Gamerman
,
D.
, and
Lopes
,
H. F.
,
2006
,
Markov Chain Monte Carlo: Stochastic Simulation to Bayesian Inference
,
Chapman and Hall/CRC
,
New York
.
30.
Orlande
,
H. R. B.
,
Fudym
,
O.
,
Maillet
,
D.
, and
Cotta
,
R. M.
,
2011
,
Thermal Measurements and Inverse Techniques
,
CRC Press
,
Boca Raton
.
31.
Orlande
,
H. R. B.
,
2012
, “
Inverse Problems in Heat Transfer: New Trends on Solution Methodologies and Applications
,”
ASME J. Heat Mass Transfer
,
134
(
3
), p.
031011
.
32.
Bélanger
,
M.
,
El-Jabi
,
N.
,
Caissie
,
D.
,
Ashkar
,
F.
, and
Ribi
,
J. M.
,
2005
, “
Estimation de La Température de L’eau de Rivière En Utilisant Les Réseaux de Neurones et La Régression Linéaire Multiple
,”
Rev. Sci.
,
18
(
3
), pp.
403
421
.
33.
Bondarev
,
N. V.
,
2019
, “
Artificial Neural Network and Multiple Linear Regression for Prediction and Classification of Sustainability of Sodium and Potassium Coronates
,”
Russ. J. Gen. Chem.
,
89
(
7
), pp.
1438
1446
.
34.
Mokarram
,
M.
,
2016
, “
Modeling of Multiple Regression and Multiple Linear Regressions for Prediction of Groundwater Quality (Case Study: North of Shiraz)
,”
Model Earth Syst. Environ.
,
2
(
1
), pp.
3
9
.
35.
Delbari
,
M.
,
Sharifazari
,
S.
, and
Mohammadi
,
E.
,
2019
, “
Modeling Daily Soil Temperature Over Diverse Climate Conditions in Iran—A Comparison of Multiple Linear Regression and Support Vector Regression Techniques
,”
Theor. Appl. Climatol.
,
135
(
3–4
), pp.
991
1001
.
36.
Russell
,
S. J.
, and
Norvig
,
P.
,
2016
,
Artificial Intelligence: A Modern Approach
,
Pearson
,
New Jersey
.
37.
Bell
,
K. J.
,
1990
, “
The Art of Correlation: Accuracy vs. Extrapolability
,”
Heat Transfer Eng.
,
11
(
2
), pp.
5
5
.
38.
Bell
,
K. J.
,
1987
, “
Editorial Natural Stupidity Will Beat Artificial Intelligence Every Time
,”
Heat Transfer Eng.
,
8
(
1
), pp.
5
6
.
39.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
, et al
,
2011
, “
Scikit-Learn. Machine Learning in Phyton
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
. https://scikit-learn.org/stable/
40.
Vermahmoudi
,
Y.
,
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
, and
Naraki
,
M.
,
2014
, “
Experimental Investigation on Heat Transfer Performance of Water Nanofluid in an Air-Finned Heat Exchanger
,”
Eur. J. Mech. B/Fluids
,
44
, pp.
32
41
.
41.
Takeda
,
M.
,
Onishi
,
T.
,
Nakakubo
,
S.
, and
Fujimoto
,
S.
,
2009
, “
Physical Properties of Iron-Oxide Scales on Si-Containing Steels at High Temperature
,”
Mater Trans.
,
50
(
9
), pp.
2242
2246
.
42.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transf.
,
46
(
19
), pp.
3639
3653
.
43.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transf.
,
54
(
19–20
), pp.
4410
4428
.
44.
Dinçer
,
I.
, and
Rosen
,
M. A.
,
2021
,
Thermal Energy Storage—Systems and Applications
,
John Wiley & Sons Ltd
,
Chichester
.
45.
Cengel
,
Y.
, and
Ghajar
,
A.
,
2011
,
Heat and Mass Transfer: Fundamentals and Applications
,
McGraw Hill
,
New York
.
46.
Kedenburg
,
S.
,
Vieweg
,
M.
,
Gissibl
,
T.
, and
Giessen
,
H.
,
2012
, “
Linear Refractive Index and Absorption Measurements of Nonlinear Optical Liquids in the Visible and Near-Infrared Spectral Region
,”
Opt. Mater. Express
,
2
(
11
), pp.
1588
1611
.
47.
Carvalho
,
R. C.
,
Herzog
,
I. L.
,
Orlande
,
H. R. B.
,
Colaço
,
M. J.
,
Madeira
,
I. M.
, and
Chakraborti
,
N.
,
2023
, “
Parameter Estimation With the Markov Chain Monte Carlo Method Aided by Evolutionary Neural Networks in a Water Hammer Model
,”
Comput. Appl. Math.
,
42
(
1
), p.
35
.
You do not currently have access to this content.