Abstract

High-porosity open-cell metal foams can be utilized to fill parallel-plate channels for achieving efficient cooling performance. A wall heat transfer model considering viscous and inertial heat effects is given based on local thermal nonequilibrium theory. Detailed investigations are conducted on influences of parameters on cooling performance. The results indicate that an optimum velocity exists; impacts of porosity and pore size depend on thermophysical properties of fluids and flow velocity; heat transfer resistance also varies with them; increasing foam thickness enhances cooling performance for air under identical velocities but has negligible effect for water; under identical flow rates, decreasing foam thickness improves cooling performance; enlarging base surface area is an effective approach at low flow velocities.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Arbak
,
A.
,
Ozdemir
,
M.
, and
Dukhan
,
N.
,
2023
, “
Heat Transfer of Pulsating Water Flow Through Aluminum-Foam Channel Under Asymmetric Constant Heat Flux Boundary Condition
,”
Int. J. Therm. Sci.
,
183
, p.
107885
.
2.
Buonomo
,
B.
,
Cascetta
,
F.
,
Pasqua
,
A.
, and
Manca
,
O.
,
2023
, “
Performance Parameters Enhancement of a Thermoelectric Generator by Metal Foam in Exhaust Automotive Lines
,”
Therm. Sci. Eng. Prog.
,
38
, p.
101684
.
3.
Bai
,
M.
, and
Chung
,
J. N.
,
2011
, “
Analytical and Numerical Prediction of Heat Transfer and Pressure Drop in Open-Cell Metal Foams
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
869
880
.
4.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity MetalFoams
,”
ASME J. Heat Transf.
,
122
(
3
), pp.
557
565
.
5.
Zhao
,
C. Y.
,
Kim
,
T.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
,
2004
, “
Thermal Transport in High Porosity Cellular Metal Foams
,”
J. Thermophys. Heat Transf.
,
18
(
3
), pp.
309
317
.
6.
Salas
,
K. I.
, and
Waas
,
A. M.
,
2007
, “
Convective Heat Transfer in Open Cell Metal Foams
,”
ASME J. Heat Transf.
,
126
(
9
), pp.
1217
1229
.
7.
Bianchi
,
E.
,
Heidig
,
T.
,
Visconti
,
C. G.
,
Groppi
,
G.
,
Freunda
,
H.
, and
Tronconi
,
E.
,
2013
, “
Heat Transfer Properties of Metal Foam Supports for Structured Catalysts: Wall Heat Transfer Coefficient
,”
Catal. Today
,
216
, pp.
121
134
.
8.
Park
,
S.
,
Seo
,
D.
, and
Jeong
,
J. H.
,
2020
, “
Experimental and Numerical Analysis of Thermal Flow in Open-Cell Porous Metal During Darcy-Forchheimer Transition Regime
,”
Appl. Therm. Eng.
,
181
, p.
116029
.
9.
Hsu
,
C. T.
, and
Cheng
,
P.
,
1990
, “
Thermal Dispersion in Porous Media
,”
Int. J. Heat Mass Transf.
,
33
(
8
), pp.
1587
1597
.
10.
Ozgumus
,
T.
,
Mobedi
,
M.
,
Ozkol
,
U.
, and
Nakayama
,
A.
,
2013
, “
Thermal Dispersion in Porous Media—A Review on the Experimental Studies for Packed Beds
,”
ASME Appl. Mech. Rev.
,
65
(
3
), p.
031001
.
11.
Xu
,
H. J.
,
Qu
,
Z. G.
, and
Tao
,
W. Q.
,
2011
, “
Thermal Transport Analysis in Parallel-Plate Channel Filled With Open-Celled Metallic Foams
,”
Int. Commun. Heat Mass Transf.
,
38
(
7
), pp.
868
873
.
12.
Lu
,
T. J.
,
Stone
,
H. A.
, and
Ashby
,
M. F.
,
1998
, “
Heat Transfer in Open-Cell Metal Foams
,”
Actamater.
,
46
, pp.
3619
3635
.
13.
Bianchi
,
E.
,
Heidig
,
T.
,
Visconti
,
C. G.
,
Groppi
,
G.
,
Freund
,
H.
, and
Tronconi
,
E.
,
2012
, “
An Appraisal of the Heat Transfer Properties of Metallic Open-Cell Foams for Strongly Exo-/Endo-Thermic Catalytic Processes in Tubular Reactors
,”
Chem. Eng. J.
,
198–199
, pp.
512
528
.
14.
Mancin
,
S.
,
Zilio
,
C.
,
Diani
,
A.
, and
Rossetto
,
L.
,
2013
, “
Air Forced Convection Through Metal Foams: Experimental Results and Modeling
,”
Int. J. Heat Mass Transf.
,
62
, pp.
112
123
.
15.
Yang
,
H. Z.
,
Li
,
Y. Y.
,
Ma
,
B. J.
, and
Zhu
,
Y. G.
,
2021
, “
Review and a Theoretical Approach on Pressure Drop Correlations of Flow Through Open-Cell Metal Foam
,”
Materials
,
14
, p.
3153
.
16.
Saberinejad
,
H.
, and
Keshavarz
,
A.
,
2016
, “
Reciprocating Turbulent Flow Heat Transfer Enhancement Within a Porous Medium Embedded in a Circular Tube
,”
Appl. Therm. Eng.
,
102
, pp.
1355
1365
.
17.
Yao
,
Y.
,
Wu
,
H.
, and
Liu
,
Z.
,
2015
, “
A New Prediction Model for the Effective Thermal Conductivity of High Porosity Open-Cell Metal Foams
,”
Int. J. Therm. Sci.
,
97
, pp.
56
67
.
18.
Inayat
,
A.
,
Freund
,
H.
,
Zeiser
,
T.
, and
Schwieger
,
W.
,
2011
, “
Determining the Specific Surface Area of Ceramic Foams: The Tetrakaidecahedra Model Revisited
,”
Chem. Eng. Sci.
,
66
(
6
), pp.
1179
1188
.
19.
Peng
,
W. P.
,
Xu
,
M.
, and
Huai
,
X. L.
,
2020
, “
Gas-Solid Interfacial Heat Transfer Characteristics of Uncoated and Coated Metal Foams for Both Laminar and Turbulent Flow Regimes
,”
ASME J. Heat Transf.
,
142
(
3
), p.
032703
.
You do not currently have access to this content.