Abstract

Heat pipes are passive heat transfer systems and serve as an effective thermal management solution for electronic devices. The adaptability of heat pipes makes these suited for a wide application range, especially in the field of electronic thermal management. The current study highlights the transient numerical analysis of wickless heat pipes (thermosyphons) for the thermal management of electronic devices. The thermal performance of the thermosyphon is analyzed using both copper oxide (CuO) and aluminum oxide (Al2O3) nanofluids with their concentrations at 1% and 5%. Deionized (DI) water is employed as a reference case for comparison. The study is carried out for variable heat inputs to the thermosyphon ranging 10–50 W for a time interval of 30 s. The idea is to analyze the effect of the evaporator heat input and the nanoparticles concentration on the temperature, heat transfer coefficient, thermal resistance, and effective thermal conductivity of the heat pipe. The results indicate that CuO nanoparticles at a 5% concentration lead to a maximum thermal resistance reduction of 4.31% at 50 W, while alumina nanoparticles at the same concentration lead to a more substantial reduction of 6.66% at the same heat load. The evaporator temperature varies between 377.52 K to 374.99 K using deionized water, and 376.95 K to 374.29 K using CuO nanofluid (at 1% concentration). The heat pipe's evaporator attains its highest convective heat transfer coefficient (437.91 W/m2K) by using alumina nanofluid with 1% nanoparticle concentration at 50 W. Moreover, the effective thermal conductivity of the heat pipe is enhanced by 5% and 7% for copper oxide and aluminum oxide nanofluids (with 5% concentration), respectively, at 50 W. Thus, the nanofluids play a significant role in improving the efficiency and reliability of electronic components. These findings demonstrate the potential of using the nanofluids in thermosyphons to enhance their thermal performance in electronic cooling applications.

References

1.
Sun
,
Y.
,
Liang
,
F.
,
Tang
,
H.
,
Tang
,
Y.
,
Zhang
,
S.
, and
Chua
,
K. J.
,
2023
, “
Ultrathin Flexible Heat Pipes With Microsorum Fortunei Structural-Like Wick for Cooling Flexible Electronic Devices
,”
Int. J. Heat Mass Transfer
,
202
, p.
123743
.
2.
Wang
,
Y.
,
Wang
,
B.
,
Zhu
,
K.
,
Li
,
H.
,
He
,
W.
, and
Liu
,
S.
,
2018
, “
Energy Saving Potential of Using Heat Pipes for CPU Cooling
,”
Appl. Therm. Eng.
,
143
, pp.
630
638
.
3.
Gibbons
,
M. J.
,
Marengo
,
M.
, and
Persoons
,
T.
,
2021
, “
A Review of Heat Pipe Technology for Foldable Electronic Devices
,”
Appl. Therm. Eng.
,
194
, p.
117087
.
4.
Nikolaenko
,
Y. E.
,
Pekur
,
D. V.
,
Kravets
,
V. Y.
,
Sorokin
,
V. M.
,
Kozak
,
D. V.
,
Melnyk
,
R. S.
,
Lipnitskyi
,
L. V.
, and
Solomakha
,
A. S.
,
2022
, “
Study on the Performance of the Low-Cost Cooling System for Transmit/Receive Module and Broadening the Exploitative Capabilities of the System Using Gravity Heat Pipes
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
12
), p.
121001
.
5.
Wang
,
Z.
,
Zhang
,
H.
,
Yin
,
L.
,
Yang
,
D.
,
Yang
,
G.
,
Akkurt
,
N.
,
Liu
,
D.
,
Zhu
,
L.
,
Qiang
,
Y.
, and
Yu
,
F.
,
2022
, “
Experimental Study on Heat Transfer Properties of Gravity Heat Pipes in Single/Hybrid Nanofluids and Inclination Angles
,”
Case Stud. Therm. Eng.
,
34
, p.
102064
.
6.
Bhatt
,
A. A.
,
Jain
,
S. V.
, and
Patel
,
R. N.
,
2022
, “
Experimental Investigations on Performance Analysis of a Wickless Thermosiphon Heat Pipe With Two Heat Sources and Multiple Branches
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
10
), p.
101006
.
7.
Jose
,
J.
, and
Hotta
,
T. K
,
2023
, “An Extremum Model for the Performance Analysis of a Loop Heat Pipe using Nano-fluids,”
Optimization Methods for Product and System Design
,
Springer
,
New York
.
8.
Venkatachalapathy
,
S.
,
Kumaresan
,
G.
, and
Suresh
,
S.
,
2015
, “
Performance Analysis of Cylindrical Heat Pipe Using Nanofluids—An Experimental Study
,”
Int. J. Multiphase Flow
,
72
, pp.
188
197
.
9.
Manova
,
S.
,
Asirvatham
,
L. G.
,
Nimmagadda
,
R.
,
Bose
,
J. R.
, and
Wongwises
,
S.
,
2020
, “
Cooling of High Heat Flux Electronic Devices Using Ultra-Thin Multiport Minichannel Thermosyphon
,”
Appl. Therm. Eng.
,
169
, p.
114669
.
10.
Bernagozzi
,
M.
,
Georgoulas
,
A.
,
Miche
,
N.
, and
Marengo
,
M.
,
2022
, “
Heat Pipes in Battery Thermal Management Systems for Electric Vehicles: A Critical Review
,”
Appl. Therm. Eng.
,
219
, p.
119495
.
11.
Abdelkareem
,
M. A.
,
Maghrabie
,
H. M.
,
Abo-Khalil
,
A. G.
,
Adhari
,
O. H. K.
,
Sayed
,
E. T.
,
Radwan
,
A.
,
Rezk
,
H.
,
Jouhara
,
H.
, and
Olabi
,
A. G.
,
2022
, “
Thermal Management Systems Based on Heat Pipes for Batteries in EVs/HEVs
,”
J. Energy Storage
,
51
, p.
104384
.
12.
Hosseinzadeh
,
K.
,
Moghaddam
,
M. A. E.
,
Hatami
,
M.
,
Ganji
,
D. D.
, and
Ommi
,
F.
,
2022
, “
Experimental and Numerical Study for the Effect of Aqueous Solution on Heat Transfer Characteristics of Two Phase Close Thermosyphon
,”
Int. Commun. Heat Mass Transfer
,
135
, p.
106129
.
13.
Min
,
W.
,
Zhong
,
W.
,
Zhang
,
Y.
,
Cao
,
X.
, and
Yuan
,
Y.
,
2023
, “
Investigation of the Condensation Mass Transfer Time Relaxation Parameter for Numerical Simulation of the Thermosyphon
,”
Int. J. Heat Mass Transfer
,
201
, p.
123599
.
14.
Lu
,
P.
,
Yan
,
X.
,
Yang
,
Q.
, and
Wei
,
J.
,
2023
, “
Numerical Investigation Into the Gas–Liquid Two-Phase Flow Regime and Heat Transfer Characteristics in a Gravity Heat Pipe
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
12
), p.
121002
.
15.
Naresh
,
Y.
,
Vignesh
,
K. S.
, and
Balaji
,
C.
,
2018
, “
Experimental Investigations of the Thermal Performance of Self-Rewetting Fluids in Internally Finned Wickless Heat Pipes
,”
Exp. Therm. Fluid Sci.
,
92
, pp.
436
446
.
16.
Kujawska
,
A.
,
Mulka
,
R.
,
Hamze
,
S.
,
Żyła
,
G.
,
Zajaczkowski
,
B.
,
Buschmann
,
M. H.
, and
Estellé
,
P.
,
2021
, “
The Effect of Boiling in a Thermosyphon on Surface Tension and Contact Angle of Silica and Graphene Oxide Nanofluids
,”
Colloids Surf., A
,
627
, p.
127082
.
17.
Jiang
,
F.
,
Lin
,
Y.
,
Liu
,
Y.
,
Qi
,
G.
,
Li
,
H.
,
Li
,
X.
,
Ma
,
Y.
, and
Li
,
X.
,
2022
, “
Effect of Inclination Angle on the Thermal Performance of a Three-Phase Closed Thermosyphon Containing SiC Particles
,”
Int. J. Heat Mass Transfer
,
197
, p.
123361
.
18.
Ghorabaee
,
H.
,
Emami
,
M. R. S.
,
Moosakazemi
,
F.
,
Karimi
,
N.
,
Cheraghian
,
G.
, and
Afrand
,
M.
,
2021
, “
The Use of Nanofluids in Thermosyphon Heat Pipe: A Comprehensive Review
,”
Powder Technol.
,
394
, pp.
250
269
.
19.
Kavusi
,
H.
, and
Toghraie
,
D.
,
2017
, “
A Comprehensive Study of the Performance of a Heat Pipe by Using of Various Nanofluids
,”
Adv. Powder Technol.
,
28
(
11
), pp.
3074
3084
.
20.
Ramezanizadeh
,
M.
,
Alhuyi Nazari
,
M.
,
Ahmadi
,
M. H.
, and
Açıkkalp
,
E.
,
2018
, “
Application of Nanofluids in Thermosyphons: A Review
,”
J. Mol. Liq.
,
272
, pp.
395
402
.
21.
Vadi
,
R.
, and
Sepanloo
,
K.
,
2019
, “
Numerical Investigation of Regular and Hybrid Nanofluids Application as the Working Fluids on Thermal Performance of TPCT
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
4
), p.
041010
.
22.
Afsari
,
K.
,
Emami
,
M. R. S.
,
Zahmatkesh
,
S.
,
Klemeš
,
J. J.
, and
Bokhari
,
A.
,
2023
, “
Optimizing the Thermal Performance of the Thermosyphon Heat Pipe for Energy Saving With Graphene Oxide Nanofluid
,”
Energy
,
274
, p.
127422
.
23.
Sarafraz
,
M. M.
,
Hormozi
,
F.
, and
Peyghambarzadeh
,
S. M.
,
2014
, “
Thermal Performance and Efficiency of a Thermosyphon Heat Pipe Working with a Biologically Ecofriendly Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
297
303
.
24.
Wang
,
G. S.
,
Song
,
B.
, and
Liu
,
Z. H.
,
2010
, “
Operation Characteristics of Cylindrical Miniature Grooved Heat Pipe Using Aqueous CuO Nanofluids
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1415
1421
.
25.
Sardarabadi
,
H.
,
Heris
,
S. Z.
,
Ahmadpour
,
A.
, and
Passandideh-Fard
,
M.
,
2019
, “
Experimental Investigation of a Novel Type of Two-Phase Closed Thermosyphon Filled With Functionalized Carbon Nanotubes/Water Nanofluids for Electronic Cooling Application
,”
Energy Convers. Manag.
,
188
, pp.
321
332
.
26.
Dhanalakota
,
P.
,
Malla
,
L. K.
,
Dileep
,
H.
,
Mahapatra
,
P. S.
, and
Pattamatta
,
A.
,
2022
, “
Effective Thermal Management of Heat Sources in Sustainable Energy Devices Using a Compact Flat Thermosyphon
,”
Energy Convers. Manag.
,
268
, p.
116041
.
27.
Choi
,
D.
, and
Lee
,
K.-Y.
,
2021
, “
Experimental Study on Confinement Effect of Two-Phase Closed Thermosyphon and Heat Transfer Enhancement Using Cellulose Nanofluid
,”
Appl. Therm. Eng.
,
183
, p.
116247
.
28.
Sadeghinezhad
,
E.
,
Akhiani
,
A. R.
,
Metselaar
,
H. S. C.
,
Latibari
,
S. T.
,
Mehrali
,
M.
, and
Mehrali
,
M.
,
2020
, “
Parametric Study on the Thermal Performance Enhancement of a Thermosyphon Heat Pipe Using Covalent Functionalized Graphene Nanofluids
,”
Appl. Therm. Eng.
,
175
, p.
115385
.
29.
Parand
,
S.
,
Ziaei-Rad
,
M.
, and
Asghari
,
S.
,
2023
, “
Thermal Performance Analysis of a Trapezoid-Shape Grooved Heat Pipe With Different Working Fluids for Zero Gravity Applications
,”
Therm. Sci. Eng. Prog.
,
40
, p.
101802
.
30.
Kim
,
M.
, and
Moon
,
J. H.
,
2021
, “
Numerical Investigation and Modeling of Thermal Resistance and Effective Thermal Conductivity for Two-Phase Thermosyphon
,”
Case Stud. Therm. Eng.
,
27
, p.
101358
.
31.
Al Jubori
,
A. M.
, and
Jawad
,
Q. A.
,
2020
, “
Computational Evaluation of Thermal Behavior of a Wickless Heat Pipe Under Various Conditions
,”
Case Stud. Therm. Eng.
,
22
, p.
100767
.
32.
Mashaei
,
P. R.
, and
Shahryari
,
M.
,
2015
, “
Effect of Nanofluid on Thermal Performance of Heat Pipe With Two Evaporators; Application to Satellite Equipment Cooling
,”
Acta Astronaut.
,
111
, pp.
345
355
.
33.
Mashaei
,
P. R.
,
Shahryari
,
M.
,
Fazeli
,
H.
, and
Hosseinalipour
,
S. M.
,
2016
, “
Numerical Simulation of Nanofluid Application in a Horizontal Mesh Heat Pipe With Multiple Heat Sources: A Smart Fluid for High-Efficiency Thermal System
,”
Appl. Therm. Eng.
,
100
, pp.
1016
1030
.
34.
Ghanbarpour
,
M.
,
Nikkam
,
N.
,
Khodabandeh
,
R.
, and
Toprak
,
M. S.
,
2015
, “
Improvement of Heat Transfer Characteristics of Cylindrical Heat Pipe by Using SiC Nanofluids
,”
Appl. Therm. Eng.
,
90
, pp.
127
135
.
35.
Fadhl
,
B.
,
Wrobel
,
L. C.
, and
Jouhara
,
H.
,
2013
, “
Numerical Modelling of the Temperature Distribution in a Two-Phase Closed Thermosyphon
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
122
131
.
36.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
37.
Huminic
,
G.
, and
Huminic
,
A.
,
2013
, “
Numerical Study on Heat Transfer Characteristics of Thermosyphon Heat Pipes Using Nanofluids
,”
Energy Convers. Manag.
,
76
, pp.
393
399
.
38.
Naresh
,
Y.
, and
Balaji
,
C.
,
2017
, “
Experimental Investigations of Heat Transfer From an Internally Finned Two-Phase Closed Thermosyphon
,”
Appl. Therm. Eng.
,
112
, pp.
1658
1666
.
39.
Eidan
,
A. A.
,
AlSahlani
,
A.
,
Ahmed
,
A. Q.
,
Al-fahham
,
M.
, and
Jalil
,
J. M.
,
2018
, “
Improving the Performance of Heat Pipe-Evacuated Tube Solar Collector Experimentally by Using Al2O3 and CuO/Acetone Nanofluids
,”
Sol. Energy
,
173
, pp.
780
788
.
40.
Duddeck
,
F. M. E.
, and
Poisson
,
S. D.
,
2002
,
Heat Conduction
,
Springer
,
Berlin
.
41.
Huminic
,
G.
, and
Huminic
,
A.
,
2011
, “
Heat Transfer Characteristics of a Two-Phase Closed Thermosyphons Using Nanofluids
,”
Exp. Therm. Fluid Sci.
,
35
(
3
), pp.
550
557
.
42.
Mehrali
,
M.
,
Sadeghinezhad
,
E.
,
Azizian
,
R.
,
Akhiani
,
A. R.
,
Tahan Latibari
,
S.
,
Mehrali
,
M.
, and
Metselaar
,
H. S. C.
,
2016
, “
Effect of Nitrogen-Doped Graphene Nanofluid on the Thermal Performance of the Grooved Copper Heat Pipe
,”
Energy Convers. Manag.
,
118
, pp.
459
473
.
You do not currently have access to this content.