Abstract

Thermal management is a challenging engineering problem for CubeSats due to the limited available volumes restricting the thermal control applications. Therefore, performing thermal modeling and analyses of these small satellites is very crucial for applying proper thermal control measures to maintain safe operating conditions in space. Despite the growing interest in this field, there are still a limited number of studies investigating the thermal behavior of CubeSats. In this paper, surface temperature profiles of 1U, 2U, 3U, 5U, 6U, and 12U sized CubeSats are simulated for varying low earth orbits. The effects of altitudes changing from 400 km to 2000 km and the beta angles changing from 0 to 75 deg are analytically investigated. Not only the coatings with different absorptance and emissivity values but also different amounts of internal heat dissipations are examined to reveal their impact on the thermal balance of satellites. Results demonstrate surface temperatures are highly dependent on those variables. The amount of heat absorbed by satellite panels is affected by the different sizes of CubeSats, different coating properties of panels, and different orbital configurations. The outcomes of this research may be beneficial especially in the early design phase for designing small satellites and selecting proper orbital configurations.

References

1.
Reiss
,
P.
,
Hager
,
P.
,
Bewick
,
C.
, and
MacDonald
,
M.
,
2012
, “
New Methodologies for the Thermal Modeling of CubeSats
,”
Proceedings of the 26th Annual AIAA/USU Conference on Small Satellites, AIAA/USU
,
North Logan, UT
,
Aug. 13–16
, pp.
1
12
.
2.
Dinh
,
D.
,
2012
, “
Thermal Modeling of Nanosat
,”
M.Sc. degree, M.Sc. thesis
,
San Jose State University
,
San Jose, CA
.
3.
Wachche
,
S.
,
Marne
,
A.
,
Singare
,
S.
,
Naik
,
P.
,
Bhide
,
O.
,
Chaudhari
,
G.
,
Vartak
,
P.
,
Pendse
,
S.
, and
Tadwalkar
,
C.
,
2014
, “
Thermal Modelling and Simulation of a Pico-Satellite Using Finite Element Method
,”
Proceedings of the Fifth International Conference on Thermal Process Modeling and Computer Simulation
,
Orlando, FL
,
June 16–18
, pp.
65
74
.
4.
Das
,
T. K.
,
Totani
,
T.
,
Wakita
,
M.
, and
Nagata
,
H.
,
2015
, “
A Simple Thermal Design Procedure for Micro-and Nano-Satellites With Deployable Solar Array Panel
,”
Proceedings of the 45th International Conference on Environmental Systems
,
Bellevue, WA
,
July 12–16
, pp.
1
20
.
5.
Corpino
,
S.
,
Caldera
,
M.
,
Nichele
,
F.
,
Masoero
,
M.
, and
Viola
,
N.
,
2015
, “
Thermal Design and Analysis of a Nanosatellite in Low Earth Orbit
,”
Acta Astronaut.
,
115
, pp.
247
261
.
6.
Anh
,
N. D.
,
Hieu
,
N. N.
,
Chung
,
P. N.
, and
Anh
,
N. T.
,
2016
, “
Thermal Radiation Analysis for Small Satellites With Single-Node Model Using Techniques of Equivalent Linearization
,”
Appl. Therm. Eng.
,
94
, pp.
607
614
.
7.
Chung
,
P. N.
,
Anh
,
N. D.
,
Hieu
,
N. N.
, and
Manh
,
D. V.
,
2017
, “
Extension of Dual Equivalent Linearization to Nonlinear Analysis of Thermal Behavior of a Two-Node Model for Small Satellites in Low Earth Orbit
,”
Int. J. Mech. Sci.
,
133
, pp.
513
523
.
8.
Bulut
,
M.
,
Sözbir
,
Ö. R.
, and
Sözbir
,
N.
,
2017
, “
Thermal Control of Turksat 3U Nanosatellite
,”
Proceedings of the Fifth International Symposium on Innovative Technologies in Engineering and Science, Architecture and Construction University
,
Baku, Azerbaijan
,
Sept. 29–Oct. 1
, pp.
26
32
.
9.
Steven
,
H.
, and
Huzain
,
M. F.
,
2018
, “
Requirements and Design Structure for Surya Satellite-1
,”
IOP Conference Series: Earth and Environmental Science
,
Bogor, Indonesia,
,
Oct. 9–11
,
p. 012063
.
10.
Kovács
,
R.
, and
Józsa
,
V.
,
2018
, “
Thermal Analysis of the SMOG-1 PocketQube Satellite
,”
Appl. Therm. Eng.
,
139
, pp.
506
513
.
11.
Atar
,
C.
,
Aktaş
,
M.
, and
Sözbir
,
N.
,
2023
, “
Investigation of External Heats for CubeSats at Various Low Earth Orbits
,”
Pamukkale Univ. J. Eng. Sci.
,
29
(
4
), pp.
315
322
.
12.
Atar
,
C.
, and
Aktaş
,
M.
,
2022
, “
Advances in Thermal Modeling and Analysis of Satellites
,”
Gazi Univ. J. Sci.
,
35
(
1
), pp.
42
58
.
13.
Bulut
,
M.
, and
Sözbir
,
N.
,
2015
, “
Analytical Investigation of a Nanosatellite Panel Surface Temperatures for Different Altitudes and Panel Combinations
,”
Appl. Therm. Eng.
,
75
, pp.
1076
1083
.
14.
Sanchez-Sanjuan
,
S.
,
Gonzalez-Llorente
,
J.
, and
Hurtado-Velasco
,
R.
,
2016
, “
Comparison of the Incident Solar Energy and Battery Storage in a 3U CubeSat Satellite for Different Orientation Scenarios
,”
J. Aerosp. Technol. Manage.
,
8
(
1
), pp.
91
102
.
15.
Farrahi
,
A.
, and
Pérez-Grande
,
I.
,
2017
, “
Simplified Analysis of the Thermal Behavior of a Spinning Satellite Flying Over Sun-Synchronous Orbits
,”
Appl. Therm. Eng.
,
125
, pp.
1146
1156
.
16.
Wallace
,
P.
,
Kalapura
,
A.
, and
Kim
,
S. I.
,
2018
, “
Thermal Modelling and Analysis of a Cube Satellite, EIRSAT-1: Steady Analysis
,”
2018 AIAA SPACE and Astronautics Forum and Exposition
,
Orlando, FL
,
Sept. 17–19
, pp.
1
15
.
17.
Almehisni
,
R.
, and
Naimat
,
F. A.
,
2018
, “
Heat Transfer Influence of Solar Panel on Spacecraft
,”
Proceedings of the 2018 Advances in Science and Engineering Technology International Conferences (ASET)
,
Dubai, United Arab Emirates
,
Feb. 6–Apr. 5
, pp.
1
6
.
18.
Nenarokomov
,
A. V.
,
Alifanov
,
O. M.
,
Krainova
,
I. V.
,
Titov
,
D. M.
, and
Morzhukhina
,
A. V.
,
2019
, “
Estimation of Environmental Influence on Spacecraft Materials Radiative Properties by Inverse Problems Technique
,”
Acta Astronaut.
,
160
, pp.
323
330
.
19.
Ibrahim
,
S. A.
, and
Yamaguchi
,
E.
,
2019
, “
Thermally Induced Dynamics of Deployable Solar Panels of Nanosatellite
,”
Aircr. Eng. Aerosp. Technol.
,
91
(
7
), pp.
1039
1050
.
20.
Morsch Filho
,
E.
,
Nicolau
,
V. D. P.
,
Paiva
,
K. V. D.
, and
Possamai
,
T. S.
,
2020
, “
A Comprehensive Attitude Formulation With Spin for Numerical Model of Irradiance for CubeSats and Picosats
,”
Appl. Therm. Eng.
,
168
, p.
114859
.
21.
Bulut
,
M.
,
2021
, “
Thermal Design, Analysis, and Testing of the First Turkish 3U Communication CubeSat in Low Earth Orbit
,”
J. Therm. Anal. Calorim.
,
143
(
6
), pp.
4341
4353
.
22.
Bulut
,
M.
, and
Sözbir
,
N.
,
2021
, “
Thermal Design, Analysis and Test Validation of TURKSAT-3USAT Satellite
,”
J. Therm. Eng.
,
7
(
3
), pp.
468
482
.
23.
Morsch Filho
,
E.
,
Seman
,
L. O.
, and
Paulo Nicolau
,
V. D.
,
2021
, “
Simulation of a CubeSat With Internal Heat Transfer Using Finite Volume Method
,”
Appl. Therm. Eng.
,
193
, p.
117039
.
24.
Malde
,
C. K.
,
Sharma
,
G.
, and
Aneesh
,
A. M.
, “
Development and Testing of Computational Model for the Thermal Analysis of a CubeSat Nanosatellite
,”
Proceedings of the 2021 IEEE Aerospace Conference (50100)
,
Big Sky, MT
,
Mar. 6–13
, pp.
1
9
.
25.
Garzón
,
A.
,
Tami
,
J. A.
,
Campos-Julca
,
C. D.
, and
Acero-Niño
,
I. F.
,
2022
, “
Effect of Beta Angle and Contact Conductances on the Temperature Distribution of a 3U CubeSat
,”
Ther. Sci. Eng. Prog.
,
29
, p.
101183
.
26.
Notton
,
G.
,
2017
, “Solar Radiation for Energy Applications,”
Encyclopedia of Sustainable Technologies
,
M. A.
Abraham
, ed.,
Elsevier
,
Oxford
, pp.
339
356
.
You do not currently have access to this content.